A112844
Small-number statistic from the enumeration of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 89, 193, 185, 410, 482, 1444, 2018, 6362, 8461, 19885, 22861, 51125, 59792, 146749, 195749, 529114, 730465, 1907545, 2350177, 5638489, 6692337, 16167545, 20091490, 51762100, 67753160, 178151440, 229118152
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185. A112844(n)=185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112835
Small-number statistic from the enumeration of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 2, 5, 5, 13, 16, 37, 45, 109, 130, 313, 377, 905, 1088, 2617, 3145, 7561, 9090, 21853, 26269, 63157, 75920, 182525, 219413, 527509, 634114, 1524529, 1832625, 4405969, 5296384, 12733489, 15306833, 36800465, 44237570, 106355317
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
1 + 2*x + 5*x^2 + 5*x^3 + 13*x^4 + 16*x^5 + 37*x^6 + 45*x^7 + 109*x^8 + ...
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13. A112835(4)=13.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112839
Number of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 136, 666, 3577, 23353, 200704, 2062593, 24878084, 373006265, 6917185552, 153624835953, 4155902941554, 138450383756352, 5602635336941568, 274540864716936000, 16486029239132118530, 1209110712606533552257
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112842
Number of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 356, 1737, 9065, 49610, 325832, 2795584, 28098632, 310726442, 3877921669, 58896208285, 1083370353616, 22901813128125, 548749450880000, 15471093192996501, 522297110942557556, 20691062026775504896
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112841
Small-number statistic from the enumeration of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 34, 74, 73, 193, 256, 793, 1049, 2465, 2857, 6577, 8226, 21348, 28872, 74740, 91970, 222217, 268769, 669265, 852305, 2201945, 2805760, 7000777, 8636081, 21311098, 26588770, 67091170, 85150213
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193. A112841(n)=193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112836
Number of domino tilings of a 5-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 52, 261, 1666, 14400, 159250, 2308545, 43718544, 1079620569, 34863330980, 1466458546176, 80646187346132, 5787269582487581, 541901038236234048, 66279540183479379277, 10578427028263503488000
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112838
Small-number statistic from the enumeration of domino tilings of a 5-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 13, 29, 34, 100, 130, 305, 361, 881, 1145, 2906, 3557, 8669, 10693, 26893, 33680, 83360, 102800, 254565, 317165, 790037, 980237, 2428298, 3011265, 7483801, 9301217, 23092857, 28646722, 71093860
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34. A112838(n)=34.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A114292
Modified Schroeder numbers for q=3.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 2, 1, 16, 16, 6, 2, 1, 57, 57, 21, 6, 2, 1, 224, 224, 82, 22, 6, 2, 1, 934, 934, 341, 89, 22, 6, 2, 1, 4092, 4092, 1492, 384, 90, 22, 6, 2, 1, 18581, 18581, 6770, 1729, 393, 90, 22, 6, 2, 1, 86888, 86888, 31644, 8044, 1794, 394, 90, 22, 6, 2, 1
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Nov 21 2005
The number of paths from (0,0) to (3,3) staying between the lines y=x and y=x/2 using steps of length (0,1), (1,0) and (1,1) is a(0,3)=5.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 2, 1;
16, 16, 6, 2, 1;
57, 57, 21, 6, 2, 1;
224, 224, 82, 22, 6, 2, 1;
934, 934, 341, 89, 22, 6, 2, 1;
4092, 4092, 1492, 384, 90, 22, 6, 2, 1;
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
-
b:= proc(x, y, k) option remember;
`if`(y>x or y b(n, n, k):
seq(seq(a(n,k), k=0..n), n=0..12); # Alois P. Heinz, Apr 26 2013
-
b[x_, y_, k_] := b[x, y, k] = If[y>x || yJean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
A114299
First row of Modified Schroeder numbers for q=9 (A114295).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 5, 13, 34, 89, 288, 1029, 3794, 14113, 52624, 210428, 883881, 3805858, 16570925, 72497060, 325602364, 1498899060, 7017126473, 33185818242, 157858754637, 759960988368, 3706528583080, 18273586377144, 90805138443560, 453695642109973
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Nov 21 2005
The number of paths from (0,0) to (6,6) staying between the lines y=x and y=4x/5 using steps of length (0,1), (1,0) and (1,1) is a(6)=5.
-
b:= proc(x, y) option remember; `if`(y>x or y<4*x/5, 0,
`if`(x=0, 1, b(x, y-1)+b(x-1, y)+b(x-1, y-1)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..35); # Alois P. Heinz, Apr 25 2013
-
b[x_, y_] := b[x, y] = If[y > x || y < 4*x/5, 0, If[x == 0, 1, b[x, y-1] + b[x-1, y] + b[x-1, y-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
A112834
Large-number statistic from the enumeration of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 19, 76, 263, 1584, 8199, 73272, 566401, 7555072, 87000289, 1730799376, 29728075177, 881736342784, 22583659690665, 998900331837728, 38149790451459859, 2516220411436892160, 143302702816187031875
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13. A112834(4)=3.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
Showing 1-10 of 19 results.
Comments