A112844
Small-number statistic from the enumeration of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 89, 193, 185, 410, 482, 1444, 2018, 6362, 8461, 19885, 22861, 51125, 59792, 146749, 195749, 529114, 730465, 1907545, 2350177, 5638489, 6692337, 16167545, 20091490, 51762100, 67753160, 178151440, 229118152
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185. A112844(n)=185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112833
Number of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 2, 5, 20, 117, 1024, 13357, 259920, 7539421, 326177280, 21040987113, 2024032315968, 290333133984905, 62102074862600192, 19808204598680574457, 9421371079480456587520, 6682097668647718038428569, 7067102111711681259234263040, 11145503882824383823706372042925
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13.
-
with(LinearAlgebra):
b:= proc(x, y, k) option remember;
`if`(y>x or y Matrix(n, (i, j)-> b(i-1, i-1, j-1)):
R:= n-> Matrix(n, (i, j)-> `if`(i+j=n+1, 1, 0)):
a:= n-> Determinant(P(n)+R(n).(P(n)^(-1)).R(n)):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 26 2013
-
b[x_, y_, k_] := b[x, y, k] = If[y>x || yJean-François Alcover, Nov 08 2015, after Alois P. Heinz *)
A112839
Number of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 136, 666, 3577, 23353, 200704, 2062593, 24878084, 373006265, 6917185552, 153624835953, 4155902941554, 138450383756352, 5602635336941568, 274540864716936000, 16486029239132118530, 1209110712606533552257
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112842
Number of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 356, 1737, 9065, 49610, 325832, 2795584, 28098632, 310726442, 3877921669, 58896208285, 1083370353616, 22901813128125, 548749450880000, 15471093192996501, 522297110942557556, 20691062026775504896
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112841
Small-number statistic from the enumeration of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 34, 74, 73, 193, 256, 793, 1049, 2465, 2857, 6577, 8226, 21348, 28872, 74740, 91970, 222217, 268769, 669265, 852305, 2201945, 2805760, 7000777, 8636081, 21311098, 26588770, 67091170, 85150213
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193. A112841(n)=193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112836
Number of domino tilings of a 5-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 52, 261, 1666, 14400, 159250, 2308545, 43718544, 1079620569, 34863330980, 1466458546176, 80646187346132, 5787269582487581, 541901038236234048, 66279540183479379277, 10578427028263503488000
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112838
Small-number statistic from the enumeration of domino tilings of a 5-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 13, 29, 34, 100, 130, 305, 361, 881, 1145, 2906, 3557, 8669, 10693, 26893, 33680, 83360, 102800, 254565, 317165, 790037, 980237, 2428298, 3011265, 7483801, 9301217, 23092857, 28646722, 71093860
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34. A112838(n)=34.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A071101
Expansion of (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.
Original entry on oeis.org
5, 16, 45, 130, 377, 1088, 3145, 9090, 26269, 75920, 219413, 634114, 1832625, 5296384, 15306833, 44237570, 127848949, 369490320, 1067846845, 3086134658, 8919094697, 25776662080, 74495936025, 215297250946, 622220603405, 1798250918672, 5197041610021
Offset: 0
G.f. = 5 + 16*x + 45*x^2 + 130*x^3 + 377*x^4 + 1088*x^5 + 3145*x^6 + 9090*x^7 + ...
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).
- A.H.M. Smeets, Table of n, a(n) for n = 0..2169
- J. Propp, Updated article
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
-
a:=[5,16,45,130];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2] +2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019
-
seq(coeff(series((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
-
Table[Abs[Fibonacci[n+3, 1+I]]^2, {n,0,30}] (* Vladimir Reshetnikov, Oct 05 2016 *)
CoefficientList[Series[(5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *)
LinearRecurrence[{2,2,2,-1},{5,16,45,130},30] (* Harvey P. Dale, Oct 03 2024 *)
-
{a(n) = my(m = abs(n+3)); polcoeff( (x - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)}; /* Michael Somos, Dec 15 2011 */
-
x='x+O('x^33); Vec((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
-
from math import log
a0,a1,a2,a3,n = 130,45,16,5,3
print(0,a3)
print(1,a2)
print(2,a1)
print(3,a0)
while log(a0)/log(10) < 1000:
a0,a1,a2,a3,n = 2*(a0+a1+a2)-a3,a0,a1,a2,n+1
print(n,a0) # A.H.M. Smeets, Sep 12 2018
-
((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019
A112834
Large-number statistic from the enumeration of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 19, 76, 263, 1584, 8199, 73272, 566401, 7555072, 87000289, 1730799376, 29728075177, 881736342784, 22583659690665, 998900331837728, 38149790451459859, 2516220411436892160, 143302702816187031875
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13. A112834(4)=3.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A071100
Expansion of (5 + 3*x + x^2 - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.
Original entry on oeis.org
5, 13, 37, 109, 313, 905, 2617, 7561, 21853, 63157, 182525, 527509, 1524529, 4405969, 12733489, 36800465, 106355317, 307372573, 888323221, 2567301757, 7419639785, 21443156953, 61971873769, 179102039257, 517614500173, 1495933669445, 4323328543981
Offset: 0
G.f. = 5 + 13*x + 37*x^2 + 109*x^3 + 313*x^4 + 905*x^5 + 2617*x^6 + 7561*x^7 + ...
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).
- A.H.M. Smeets, Table of n, a(n) for n = 0..2169
- J. Propp, Updated article
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
-
a:=[5,13,37,109];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
-
seq(coeff(series((5+3*x+x^2-x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
-
CoefficientList[Series[(5 + 3*x + x^2 -x^3)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4), {x, 0, 50}], x] (* Stefano Spezia, Sep 12 2018 *)
LinearRecurrence[{2,2,2,-1},{5,13,37,109},30] (* Harvey P. Dale, Sep 03 2021 *)
-
{a(n) = my(m = n+2); if( m < 0, m = -1 - m); polcoeff( (1 - x + x^2 - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)}; /* Michael Somos, Dec 15 2011 */
-
x='x+O('x^33); Vec((5+3*x+x^2-x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
Showing 1-10 of 14 results.
Comments