A112859 Primes such that the sum of the predecessor and successor primes is divisible by 29.
149, 433, 463, 491, 839, 907, 929, 953, 1217, 1451, 1741, 2789, 2957, 3853, 3917, 4493, 4639, 4957, 5021, 5167, 5227, 5569, 6353, 6673, 6733, 6823, 7219, 7481, 7573, 7649, 7919, 8293, 8443, 8699, 9281, 9421, 9743, 9923, 10151, 10211, 10709, 11161
Offset: 1
Examples
a(1) = 149 because prevprime(149) + nextprime(149) = 139 + 151 = 290 = 29 * 10. a(2) = 433 because prevprime(433) + nextprime(433) = 431 + 439 = 870 = 29 * 30. a(3) = 463 because prevprime(463) + nextprime(463) = 461 + 467 = 928 = 29 * 32. a(4) = 491 because prevprime(491) + nextprime(491) = 487 + 499 = 986 = 29 * 34.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
Primes:= select(isprime, [seq(i,i=3..20000,2)]): R:= select(t -> Primes[t-1]+Primes[t+1] mod 29 = 0, [$2..nops(Primes)-1]): Primes[R]; # Robert Israel, May 02 2017
-
Mathematica
Prime@ Select[Range[2, 1372], Mod[Prime[ # - 1] + Prime[ # + 1], 29] == 0 &] (* Robert G. Wilson v, Jan 05 2006 *)
-
PARI
list(lim)=my(v=List(),p=3,q=5); forprime(r=7,nextprime(lim\1+1), if((p+r)%29==0, listput(v,q)); p=q; q=r); Vec(v) \\ Charles R Greathouse IV, Apr 08 2025
Formula
a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 29. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 29.
Under the Hardy-Littlewood k-tuple conjecture, a(n) ~ 28*n log n. - Charles R Greathouse IV, Apr 08 2025
Extensions
More terms from Robert G. Wilson v, Jan 05 2006
Comments