A112865 a(n) = (-1)^(n + floor(n/4) + floor(n/4^2) + ...).
1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) option remember; (-1)^n*procname(floor(n/4)) end proc: f(0):= 1: seq(f(n),n=0..200); # Robert Israel, Apr 20 2017
-
PARI
{a(n) = if( n<1, n==0, (-1)^n * a(n \ 4))} /* Michael Somos, Aug 15 2008 */
-
PARI
{a(n) = local(A); if( n<0, 0, A = Vecrev(binary(n)); (-1)^sum(k=1, #A, A[k] * (k%2)))} /* Michael Somos, Aug 15 2008 */
Formula
a(n) = (-1)^n * a([n/4]). - Michael Somos, Aug 15 2008
Euler transform of sequence b(n) where b(1) = 1, b(2^(2*k-1)) = -1, b(2^(2*k)) = 2 unless k=0, b(n) = 0 otherwise.
G.f.: (Product_{k>0} 1 - x^(4^k)) / (Product_{k>=0} 1 + x^(4^k)). - Michael Somos, Aug 15 2008
a(n) = 2*A112539(n-1)-1. - Robert Israel, Apr 20 2017
a(n) = 1 - 2*A341389(n). - Kevin Ryde, Feb 17 2021
Extensions
Edited by Michael Somos, Aug 15 2008
Comments