cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112929 Number of squarefree integers less than the n-th prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 15, 17, 19, 23, 26, 28, 30, 32, 36, 37, 41, 44, 45, 49, 51, 55, 60, 61, 63, 66, 67, 70, 77, 80, 83, 85, 91, 92, 95, 99, 102, 104, 108, 109, 116, 117, 120, 121, 129, 138, 140, 141, 144, 148, 149, 153, 157, 161, 165, 166, 169, 171, 173, 179, 187
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005 and Emeric Deutsch, Oct 14 2005

Keywords

Comments

a(n) = order of n-th term of A112925 among squarefree integers.

Examples

			a(5)=7 because the 5th prime is 11 and the squarefree numbers not exceeding 11 are: 2,3,5,6,7,10,11.
The 5th term of A112925 is 10 and 10 is the 7th squarefree integer (with 1 counted as the first squarefree integer). So a(5) = 7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from 2 to p do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: nops(B) end: seq(a(m),m=1..75);
    # Or:
    a := n -> nops(select(NumberTheory:-IsSquareFree, [seq(1..ithprime(n)-1)])):
    seq(a(n), n=1..63);  # Peter Luschny, Dec 12 2024
  • Mathematica
    f[n_] := Prime[n] - Sum[ If[ MoebiusMu[k]==0, 1, 0], {k, Prime[n]}] - 1; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Oct 15 2005; syntax corrected by Frank M Jackson, Dec 28 2018 *)
  • PARI
    a(n)={
    my(lim=prime(n)-1,b=sqrtint(lim\2));
    sum(k=1,b,moebius(k)*(lim\k^2))+
    sum(k=b+1,sqrt(lim),moebius(k))
    }; \\ Charles R Greathouse IV, Apr 26 2012
    
  • PARI
    a(n,p=prime(n))=p--; my(s,b=sqrtint(p\2)); forsquarefree(k=1, b, s += p\k[1]^2*moebius(k)); forsquarefree(k=b+1, sqrtint(p), s += moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A112929(n): return (p:=prime(n))-1+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Dec 12 2024

Formula

A005117(a(n)) = A112925(n). - R. J. Mathar, Apr 19 2008
a(n) = A013928(A000040(n)). - Reinhard Zumkeller, Apr 05 2010
a(n) ~ 6/Pi^2 * n log n. - Charles R Greathouse IV, Apr 26 2012

Extensions

More terms from Diana L. Mecum, May 29 2007
Edited by N. J. A. Sloane, Apr 26 2008 at the suggestion of R. J. Mathar