A112929 Number of squarefree integers less than the n-th prime.
1, 2, 3, 5, 7, 8, 11, 12, 15, 17, 19, 23, 26, 28, 30, 32, 36, 37, 41, 44, 45, 49, 51, 55, 60, 61, 63, 66, 67, 70, 77, 80, 83, 85, 91, 92, 95, 99, 102, 104, 108, 109, 116, 117, 120, 121, 129, 138, 140, 141, 144, 148, 149, 153, 157, 161, 165, 166, 169, 171, 173, 179, 187
Offset: 1
Keywords
Examples
a(5)=7 because the 5th prime is 11 and the squarefree numbers not exceeding 11 are: 2,3,5,6,7,10,11. The 5th term of A112925 is 10 and 10 is the 7th squarefree integer (with 1 counted as the first squarefree integer). So a(5) = 7.
Links
- Diana Mecum and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 200 terms from Mecum)
Programs
-
Maple
with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from 2 to p do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: nops(B) end: seq(a(m),m=1..75); # Or: a := n -> nops(select(NumberTheory:-IsSquareFree, [seq(1..ithprime(n)-1)])): seq(a(n), n=1..63); # Peter Luschny, Dec 12 2024
-
Mathematica
f[n_] := Prime[n] - Sum[ If[ MoebiusMu[k]==0, 1, 0], {k, Prime[n]}] - 1; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Oct 15 2005; syntax corrected by Frank M Jackson, Dec 28 2018 *)
-
PARI
a(n)={ my(lim=prime(n)-1,b=sqrtint(lim\2)); sum(k=1,b,moebius(k)*(lim\k^2))+ sum(k=b+1,sqrt(lim),moebius(k)) }; \\ Charles R Greathouse IV, Apr 26 2012
-
PARI
a(n,p=prime(n))=p--; my(s,b=sqrtint(p\2)); forsquarefree(k=1, b, s += p\k[1]^2*moebius(k)); forsquarefree(k=b+1, sqrtint(p), s += moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
-
Python
from math import isqrt from sympy import prime, mobius def A112929(n): return (p:=prime(n))-1+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Dec 12 2024
Formula
a(n) ~ 6/Pi^2 * n log n. - Charles R Greathouse IV, Apr 26 2012
Extensions
More terms from Diana L. Mecum, May 29 2007
Edited by N. J. A. Sloane, Apr 26 2008 at the suggestion of R. J. Mathar
Comments