A112956 a(n) = number of ways the set {1,2,...,n} can be split into proper subsets with equal sums.
0, 0, 1, 1, 1, 1, 5, 11, 10, 1, 79, 165, 1, 664, 2917, 3308, 9295, 23729, 31874, 301029, 422896, 1, 13716866, 71504979, 100664384, 54148590, 880696661, 498017758, 27450476786, 111911522818, 179459955553, 2144502175213, 59115423982, 45837019664551
Offset: 1
Keywords
Crossrefs
Cf. A035470.
Programs
-
Maple
with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 03 2009
-
Mathematica
b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[ Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args] - 1}]]], {args[[-1]] - 1}]], {j, 1, Length[args] - 1}]]; b[a1_List, a2_List] := b[Join[a1, a2]]; a[n_] := a[n] = With[{m = n*(n + 1)/2}, Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n&]}]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)
Formula
a(n) = A035470(n) - 1. - Franklin T. Adams-Watters, Jun 02 2006
Extensions
More terms from Franklin T. Adams-Watters, Jun 02 2006
a(19)-a(33) from Alois P. Heinz, Sep 03 2009
a(34) from Alois P. Heinz, Aug 06 2016
Comments