cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112956 a(n) = number of ways the set {1,2,...,n} can be split into proper subsets with equal sums.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 5, 11, 10, 1, 79, 165, 1, 664, 2917, 3308, 9295, 23729, 31874, 301029, 422896, 1, 13716866, 71504979, 100664384, 54148590, 880696661, 498017758, 27450476786, 111911522818, 179459955553, 2144502175213, 59115423982, 45837019664551
Offset: 1

Views

Author

Floor van Lamoen, Oct 07 2005

Keywords

Comments

For n=7 we have splittings 761/5432, 752/6431, 743/6521, 7421/653 and 7/61/52/43 so a(7)=5.
a(n) = 1 <=> n*(n+1)/2 is product of two primes. - Alois P. Heinz, Sep 03 2009

Crossrefs

Cf. A035470.
Cf. A164977, A164978. - Alois P. Heinz, Sep 03 2009

Programs

  • Maple
    with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25);  # Alois P. Heinz, Sep 03 2009
  • Mathematica
    b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[ Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args] - 1}]]], {args[[-1]] - 1}]], {j, 1, Length[args] - 1}]]; b[a1_List, a2_List] := b[Join[a1, a2]];
    a[n_] := a[n] = With[{m = n*(n + 1)/2}, Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n&]}]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)

Formula

a(n) = A035470(n) - 1. - Franklin T. Adams-Watters, Jun 02 2006

Extensions

More terms from Franklin T. Adams-Watters, Jun 02 2006
a(19)-a(33) from Alois P. Heinz, Sep 03 2009
a(34) from Alois P. Heinz, Aug 06 2016