A112970 A generalized Stern sequence.
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 1, 5, 3, 3, 2, 5, 2, 3, 1, 6, 4, 3, 2, 6, 2, 3, 1, 7, 5, 4, 3, 8, 3, 5, 2, 8, 5, 4, 2, 8, 3, 3, 1, 9, 6, 5, 4, 9, 3, 6, 2, 9, 6, 4, 2, 9, 3, 3, 1, 10, 7, 6, 5, 11, 4, 8, 3, 12, 8, 6, 3, 13, 5, 5, 2, 13, 8, 7, 5, 12, 4, 7, 2, 12, 8, 5, 3, 11, 3, 4, 1, 12, 9, 7, 6
Offset: 0
Links
- Sam Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010. - _Johannes W. Meijer_, Jun 05 2011
Crossrefs
Cf. A120562 (Northshield).
Programs
-
Maple
A112970:=proc(n) option remember; if n <0 then A112970(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A112970(n/2) + A112970((n/2)-2) else A112970((n-1)/2); fi; end: seq(A112970(n),n=0..99); # Johannes W. Meijer, Jun 05 2011
-
Mathematica
a[n_] := a[n] = Which[n<0, 0, n==0 || n==1, 1, Mod[n, 2]==0, a[n/2] + a[n/2-2], True, a[(n-1)/2]]; Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Aug 02 2022 *)
Formula
a(n) = Sum_{k=0..n} mod(sum{j=0..n, (-1)^(n-k)*C(j, n-j)*C(k, j-k)}, 2).
From Johannes W. Meijer, Jun 05 2011: (Start)
a(2*n+1) = a(n) and a(2*n) = a(n) + a(n-2) with a(0) = 1, a(1) = 1 and a(n)=0 for n<=-1.
G.f.: Product_{n>=0} (1 + x^(2^n) + x^(4*2^n)). (End)
G.f. A(x) satisfies: A(x) = (1 + x + x^4) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019
Comments