cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112972 Number of ways the set {1,2,...,n} can be split into three subsets of equal sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 3, 9, 0, 43, 102, 0, 595, 1480, 0, 9294, 23728, 0, 157991, 411474, 0, 2849968, 7562583, 0, 53987864, 145173095, 0, 1061533318, 2885383960, 0, 21515805520, 59003023409, 0, 447142442841, 1235311936936, 0, 9489835046489, 26382363207307
Offset: 1

Views

Author

Floor van Lamoen, Oct 07 2005

Keywords

Examples

			For n=8 we have 84/75/6321, 84/732/651 and 831/75/642 so a(8)=3.
		

Crossrefs

Column k=3 of A275714.
Similar sequences: A327448, A327449, A327450.

Programs

  • Maple
    A112972:= n-> coeff(coeff(mul((x^(-2*k)+x^k*(y^k+y^(-k)))
                  , k=1..n), x, 0), y, 0)/6:
    seq(A112972(n), n=1..20);
    # second Maple program:
    b:= proc() option remember; local i, j, t; `if`(args[1]=0,
          `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(
          `if`(args[j] -args[nargs]<0, 0, b(sort([seq(args[i]-
          `if`(i=j, args[nargs], 0), i=1..nargs-1)])[],
                    args[nargs]-1)), j=1..nargs-1))
        end:
    a:= n-> (m-> `if`(irem(m, 3)=0, b((m/3)$3, n)/6, 0))(n*(n+1)/2):
    seq(a(n), n=1..42);  # Alois P. Heinz, Sep 03 2009
  • Mathematica
    b[args_List] := b[args] = Module[{nargs = Length[args]}, If[args[[1]] == 0, If[nargs == 2, 1, b[args // Rest]], Sum[If[args[[j]] - Last[args] < 0, 0, b[Append[Sort[Flatten[Table[args[[i]] - If[i == j, Last[args], 0], {i, 1, nargs-1}]]], Last[args]-1]]], {j, 1, nargs-1}]]];
    a[n_] := If[Mod[#, 3] == 0, b[{#/3, #/3, #/3, n}]/6, 0]&[n(n+1)/2];
    Array[a, 42] (* Jean-François Alcover, Oct 30 2020, after Alois P. Heinz *)

Formula

a(n) is 1/6 of the coefficient of x^0*y^0 in Product_{k=1..n} (x^(-2*k)+x^k*(y^k+y^(-k))).

Extensions

Extended beyond a(25) by Alois P. Heinz, Sep 03 2009