A113019 (Number of digits of n) raised to the power of (the digital root of n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32
Offset: 0
Examples
a(0) = 1^0 = 1. a(9) = 1^9 = 1. a(10) = 2^(1+0) = 2. a(89) = 2^(8+9=17=>1+7) = 2^8 = 256.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A101337.
Programs
-
Maple
A113019 := proc(n) if(n=0)then return 1:fi: return length(n)^(((n-1) mod 9) + 1): end: seq(A113019(n),n=0..100); # Nathaniel Johnston, May 04 2011
-
Mathematica
f[n_] := If[n == 0, 1, Floor[ Log[10, 10n]]^(Mod[n - 1, 9] + 1)]; Table[ f[n], {n, 0, 73}] (* Robert G. Wilson v, Jan 04 2006 *)
-
PARI
apply( A113019(n)=(logint(n+!n,10)+1)^((n-1)%9+1), [0..99]) \\ M. F. Hasler, Nov 17 2019
Formula
a(ijk...) [m digits ijk...] = m^(i+j+k+..[one digit])
Comments