cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113019 (Number of digits of n) raised to the power of (the digital root of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32
Offset: 0

Views

Author

Alexandre Wajnberg, Jan 03 2006

Keywords

Comments

n=1 and 32 are fixed points. Are there any others?
First occurrence of k: 1,10,100,11,10000,100000,1000000,12,101,1000000000, ..., . - Robert G. Wilson v

Examples

			a(0) = 1^0 = 1.
a(9) = 1^9 = 1.
a(10) = 2^(1+0) = 2.
a(89) = 2^(8+9=17=>1+7) = 2^8 = 256.
		

Crossrefs

Cf. A101337.

Programs

  • Maple
    A113019 := proc(n) if(n=0)then return 1:fi: return length(n)^(((n-1) mod 9) + 1): end: seq(A113019(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    f[n_] := If[n == 0, 1, Floor[ Log[10, 10n]]^(Mod[n - 1, 9] + 1)]; Table[ f[n], {n, 0, 73}] (* Robert G. Wilson v, Jan 04 2006 *)
  • PARI
    apply( A113019(n)=(logint(n+!n,10)+1)^((n-1)%9+1), [0..99]) \\ M. F. Hasler, Nov 17 2019

Formula

a(ijk...) [m digits ijk...] = m^(i+j+k+..[one digit])