cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113035 Number of ways the set {1,2,...,n} can be split into two subsets of which the sum of one is twice the sum of the other.

Original entry on oeis.org

0, 1, 1, 0, 3, 4, 0, 10, 17, 0, 46, 78, 0, 231, 401, 0, 1233, 2177, 0, 6869, 12268, 0, 39502, 71172, 0, 232686, 422076, 0, 1396669, 2547246, 0, 8512170, 15593760, 0, 52534875, 96598865, 0, 327669853, 604405633, 0, 2062171364, 3814087419, 0, 13078921499
Offset: 1

Views

Author

Floor van Lamoen, Oct 11 2005

Keywords

Examples

			For n=5 we have 5/1234, 14/532 and 23/541 so a(5)=3.
		

Crossrefs

Programs

  • Maple
    A113035:= proc(n) local i,j,p,t; t:= NULL; for j to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)); od; t:=t,coeff(p,x,0); od; t; end;
    # second Maple program:
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
        end:
    a:= n-> `if`(irem(n, 3)=1, 0, b(n*(n+1)/6, n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 31 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{m = i(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n - i], i - 1] + b[n + i, i - 1]]]];
    a[n_] := If[Mod[n, 3] == 1, 0, b[n(n+1)/6, n]];
    Array[a, 60] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)

Formula

a(n) is the coefficient of x^0 in Product_{k=1..n} x^(-2k)+x^k.