A113035 Number of ways the set {1,2,...,n} can be split into two subsets of which the sum of one is twice the sum of the other.
0, 1, 1, 0, 3, 4, 0, 10, 17, 0, 46, 78, 0, 231, 401, 0, 1233, 2177, 0, 6869, 12268, 0, 39502, 71172, 0, 232686, 422076, 0, 1396669, 2547246, 0, 8512170, 15593760, 0, 52534875, 96598865, 0, 327669853, 604405633, 0, 2062171364, 3814087419, 0, 13078921499
Offset: 1
Keywords
Examples
For n=5 we have 5/1234, 14/532 and 23/541 so a(5)=3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A113035:= proc(n) local i,j,p,t; t:= NULL; for j to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)); od; t:=t,coeff(p,x,0); od; t; end; # second Maple program: b:= proc(n, i) option remember; local m; m:= i*(i+1)/2; `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1))) end: a:= n-> `if`(irem(n, 3)=1, 0, b(n*(n+1)/6, n)): seq(a(n), n=1..60); # Alois P. Heinz, Oct 31 2011
-
Mathematica
b[n_, i_] := b[n, i] = Module[{m = i(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n - i], i - 1] + b[n + i, i - 1]]]]; a[n_] := If[Mod[n, 3] == 1, 0, b[n(n+1)/6, n]]; Array[a, 60] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)
Formula
a(n) is the coefficient of x^0 in Product_{k=1..n} x^(-2k)+x^k.