cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113039 Number of ways the set {1,2,...,n} can be split into three subsets of which the three sums are consecutive.

Original entry on oeis.org

0, 0, 1, 0, 3, 5, 0, 23, 52, 0, 254, 593, 0, 3611, 8859, 0, 55554, 142169, 0, 946871, 2466282, 0, 17095813, 45359632, 0, 323760077, 870624976, 0, 6367406592, 17307580710, 0, 129063054631, 353941332518, 0, 2682355470491, 7410591325928, 0, 56930627178287
Offset: 1

Views

Author

Floor van Lamoen, Oct 12 2005

Keywords

Comments

The empty subset is not allowed, otherwise we would get a(2)=1. - Alois P. Heinz, Sep 03 2009

Examples

			For n=5 we have splittings 4/23/15, 4/5/123, 13/5/24, so a(5)=3.
		

Crossrefs

Cf. A112972.

Programs

  • Maple
    A113039:=proc(n) local i,j,p,t; t:= 0,0; for j from 3 to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)*(y^i+y^(-i))); od; t:=t,coeff(coeff(p,x,3),y,1); od; t; end;
    # second Maple program:
    b:= proc() option remember; local i, j, t; `if` (args[1]=0, `if` (nargs=2, 1, b(args[t] $t=2..nargs)), add (`if` (args[j] -args[nargs] <0, 0, b(sort ([seq (args[i] -`if` (i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= n*(n+1)/2; `if` (n>2 and irem (m,3)=0, b(m/3-1, m/3, m/3+1, n), 0) end: seq (a(n), n=1..42); # Alois P. Heinz, Sep 03 2009
  • Mathematica
    a[n_] := If[n <= 2, 0, Product[x^(-2k)+x^k(y^k+y^(-k)), {k, 1, n}] // SeriesCoefficient[#, {x, 0, 3}, {y, 0, 1}]&];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 26}] (* Jean-François Alcover, Nov 17 2022 *)

Formula

a(n) is the coefficient of x^3y in product(x^(-2k)+x^k(y^k+y^(-k)), k=1..n) for n>2.

Extensions

Extended beyond a(25) by Alois P. Heinz, Sep 03 2009