cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384844 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the n-Dorogovtsev-Goltsev-Mendes graph.

Original entry on oeis.org

3, 9, 6, 27, 57, 21, 81, 351, 369, 60, 243, 1806, 3582, 1716, 156, 729, 8472, 26346, 24216, 6648, 384, 2187, 37683, 165375, 241032, 128880, 22896, 912, 6561, 162177, 938907, 1946676, 1670280, 584784, 72624, 2112, 19683, 683112, 4979928, 13697148, 16889340, 9580368, 2366256, 216768, 4800
Offset: 1

Views

Author

Andrew Howroyd, Jun 10 2025

Keywords

Examples

			Triangle begins:
     3;
     9,     6;
    27,    57,     21;
    81,   351,    369,     60;
   243,  1806,   3582,   1716,    156;
   729,  8472,  26346,  24216,   6648,   384;
  2187, 37683, 165375, 241032, 128880, 22896, 912;
  ...
		

Crossrefs

Main diagonal is A113070(n-1) for n > 1.
Column 1 is A000244.
Cf. A384843.

Programs

  • PARI
    T(n)={ my(c=x^2*y/((1 - x)*(1 - 3*x + 2*(1 - y)*x^2)) + O(x*x^n), b=(1-2*x)*c/x, g = y*(1+b+2*c) + serconvol(b + c, b + c + y*c) + serconvol(y*c, b + 2*c)); [Vecrev(p/y)|p<-Vec(3*g/(1 - 3*x))]}
    { foreach(T(10), row, print(row)) }
    
  • PARI
    T(n)={my(g=3*(1 - 2*(3 + y)*x + 3*(3 - y + y^2)*x^2 - 4*(1 - y)^2*x^3)/((1 - x)*(1 - 3*x)*(1 - (5 + 4*y)*x + 4*(1 - y)^2*x^2))); [Vecrev(p)|p<-Vec(g + O(x^n))]}
    { foreach(T(10), row, print(row)) }

Formula

G.f.: 3*x*y*(1 - 2*(3 + y)*x + 3*(3 - y + y^2)*x^2 - 4*(1 - y)^2*x^3)/((1 - x)*(1 - 3*x)*(1 - (5 + 4*y)*x + 4*(1 - y)^2*x^2)).
A384843(n) = Sum_{k=1..n} k*T(n,k).

A113072 Tridiagonal matrix associated with coordination sequences.

Original entry on oeis.org

1, 2, 2, 1, 4, 3, 0, 2, 6, 4, 0, 0, 3, 8, 5, 0, 0, 0, 4, 10, 6, 0, 0, 0, 0, 5, 12, 7, 0, 0, 0, 0, 0, 6, 14, 8, 0, 0, 0, 0, 0, 0, 7, 16, 9, 0, 0, 0, 0, 0, 0, 0, 8, 18, 10, 0, 0, 0, 0, 0, 0, 0, 0, 9, 20, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 22, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 24, 13, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Oct 14 2005

Keywords

Comments

Coefficient array of expansion of ((1+x)/(1-r*x))^2, or self-convolution of coordination sequence for the infinite tree with valency r. Row sums are A008574, (coordination sequence for square lattice). Diagonal sums are A000027.

Examples

			Triangle begins
  1;
  2,  2;
  1,  4,  3;
  0,  2,  6,  4;
  0,  0,  3,  8,  5;
  0,  0,  0,  4, 10,  6;
  0,  0,  0,  0,  5, 12,  7;
		

Crossrefs

Formula

Column k has g.f. (1+x)^2*(k+1)x^k.
Showing 1-2 of 2 results.