A113077 Column 3 of square table A093729; a(n) gives the number of n-th generation descendents of a node labeled (3) in the tree of tournament sequences, for n>=0.
1, 3, 15, 123, 1656, 36987, 1391106, 89574978, 10036638270, 1986129275673, 703168200003336, 450303519404234922, 526421174510139860241, 1132076561237754405471033, 4507472672071759672232970720
Offset: 0
Keywords
Examples
The tree of tournament sequences of descendents of a node labeled (3) begins: [3]; generation 1: 3->[4,5,6]; generation 2: 4->[5,6,7,8], 5->[6,7,8,9,10], 6->[7,8,9,10,11,12]; ... Then a(n) gives the number of nodes in generation n. Also, a(n+1) = sum of labels of nodes in generation n.
Links
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Programs
-
PARI
{a(n,q=2)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^3)[n+1,1])}
Comments