A113080 Square table, read by antidiagonals, where T(n,k) equals the number of k-tournament sequences of length n for k>=1, with T(0,k) = 1 for k>=1 and T(n,1) = 0 for n>0.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 7, 10, 3, 1, 0, 41, 114, 27, 4, 1, 0, 397, 2970, 693, 56, 5, 1, 0, 6377, 182402, 52812, 2704, 100, 6, 1, 0, 171886, 27392682, 12628008, 481376, 8125, 162, 7, 1, 0, 7892642, 10390564242, 9924266772, 337587520, 2918750, 20502, 245, 8
Offset: 1
Examples
Table begins: 1,1,1,1,1,1,1,1,1,1,1,1,1,... 0,1,2,3,4,5,6,7,8,9,10,11,... 0,2,10,27,56,100,162,245,352,486,650,... 0,7,114,693,2704,8125,20502,45619,92288,173259,... 0,41,2970,52812,481376,2918750,13399506,50216915,... 0,397,182402,12628008,337587520,4976321250,48633051942,... 0,6377,27392682,9924266772,978162377600,42197834315625,... 0,171886,10390564242,26507035453923,12088945462984960,... 0,7892642,10210795262650,246323730279500082,...
Links
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Crossrefs
Programs
-
PARI
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^k)[r-1,c-1])+(M^k)[r-1,c]))); return((M^(k-1))[n+1,1])}
Comments