A113085 Number of 3-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 2) and t_{i+1} <= 3*t_i for 1
1, 1, 3, 21, 331, 11973, 1030091, 218626341, 118038692523, 166013096151621, 619176055256353291, 6207997057962300681573, 169117528577725378851523691, 12626174170113987651028630856581, 2602022118010488151483064379958957003
Offset: 0
Keywords
Examples
The tree of 3-tournament sequences of odd integer descendents of a node labeled (1) begins: [1]; generation 1: 1->[3]; generation 2: 3->[5,7,9]; generation 3: 5->[7,9,11,13,15], 7->[9,11,13,15,17,19,21], 9->[11,13,15,17,19,21,23,25,27]; ... Then a(n) gives the number of nodes in generation n. Also, a(n+1) = sum of labels of nodes in generation n.
Links
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Crossrefs
Programs
-
PARI
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return(M[n+1,1])}
Comments