A113100 Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 3 and t_i = 3 (mod 3) and t_{i+1} <= 4*t_i for 1
1, 3, 27, 693, 52812, 12628008, 9924266772, 26507035453923, 246323730279500082, 8100479557816637139288, 954983717308947379891713642, 407790020849346203244152231395953
Offset: 0
Keywords
Examples
The tree of 4-tournament sequences of descendents of a node labeled (3) begins: [3]; generation 1: 3->[6,9,12]; generation 2: 6->[9,12,15,18,21,24], 9->[12,15,18,21,24,27,30,33,36], 12->[15,18,21,24,27,30,33,36,39,42,45,48]; ... Then a(n) gives the number of nodes in generation n. Also, a(n+1) = sum of labels of nodes in generation n.
Links
- T. D. Noe, Table of n, a(n) for n=0..30
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Crossrefs
Programs
-
PARI
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^3)[n+1,1])}
Comments