A113109 Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 4) and t_{i+1} <= 5*t_i for 1
1, 2, 16, 440, 43600, 16698560, 26098464448, 172513149018752, 4938593053649344000, 622793203804403960906240, 350552003258337075784341271552, 890153650520295355798989668668129280
Offset: 0
Keywords
Examples
The tree of 5-tournament sequences of descendents of a node labeled (2) begins: [2]; generation 1: 2->[6,10]; generation 2: 6->[10,14,18,22,26,30], 10->[14,18,22,26,30,34,38,42,46,50]; ... Then a(n) gives the number of nodes in generation n. Also, a(n+1) = sum of labels of nodes in generation n.
Links
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Crossrefs
Programs
-
PARI
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^2)[n+1,1])}
Comments