A113135 a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 8.
1, 1, 8, 128, 3136, 103424, 4270080, 211107840, 12135936000, 794618298368, 58355305676800, 4749550536359936, 424336070117163008, 41287521140173963264, 4346005245162898325504, 492102089936714946576384
Offset: 0
Keywords
Examples
a(2) = 8. a(3) = 2*8^2 = 128. a(4) = 8*3*128 + 1*8*8 = 3136. a(5) = 8*4*3136 + 1*8*128 + 2*128*8 = 103424. a(6) = 8*5*103424 + 1*8*3136 + 2*128*128 + 3*3136*8 = 4270080 G.f.: A(x) = 1 + x + 8*x^2 + 128*x^3 + 3136*x^4 + 103424*x^5 +... = x/series_reversion(x + x^2 + 9*x^3 + 153*x^4 + 3825*x^5 +...).
Crossrefs
Programs
-
Mathematica
x=8;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 16}](Robert G. Wilson v)
-
PARI
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,8*j+1))))))[n+1]
-
PARI
a(n,x=8)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
Formula
a(n+1) = Sum{k, 0<=k<=n} 8^k*A113129(n, k).
G.f.: A(x) = x/series_reversion(x*G(x)) where G(x) = g.f. of 8-fold factorials.
G.f. satisfies: A(x*G(x)) = G(x) = g.f. of 8-fold factorials.