cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A113143 Table T(n,k), n >= 0 and k >= 0, read by antidiagonals, related to A111146.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 8, 1, 1, 2, 6, 15, 16, 1, 1, 2, 7, 26, 54, 32, 1, 1, 2, 8, 41, 158, 235, 64, 1, 1, 2, 9, 60, 364, 1282, 1237, 128, 1, 1, 2, 10, 83, 708, 4409, 13158, 7790, 256, 1, 1, 2, 11, 110, 1226, 11428, 67563, 163354
Offset: 0

Views

Author

Keywords

Comments

Let R(m,n,k), 0 <= k <= n, the Riordan array (1, x*g(x)) where g(x)is g.f. of the m-fold factorials.
Then the row sums of R(m,n,k) are given by row m; example: m = 1, R(1,n,k) = A084938(n,k) and A051295 gives the row sums of A084938.
Square array of INVERT of m-fold factorials.

Examples

			Table begins:
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...
1, 1, 2, 5, 15, 54, 235, 1237, 7790, 57581, 489231, 4690254, ...
1, 1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, ...
1, 1, 2, 7, 41, 364, 4409, 67573, 1248626, 26948347, 664414997, ...
1, 1, 2, 8, 60, 708, 11428, 232756, 5704964, 163192820, 5331728964, ...
1, 1, 2, 9, 83, 1226, 24727, 627909, 19169758, 682800001, 27776711627, ...
1, 1, 2, 10, 110, 1954, 47270, 1437562, 52531310, 2239259266, 109021857446, ...
1, 1, 2, 11, 141, 2928, 82597, 2925973, 124502114, 6179425823, 350316271761, ...
1, 1, 2, 12, 176, 4184, 134824, 5451528, 264710536, 14992543432, 969925065992, ...
1, 1, 2, 13, 215, 5758, 208643, 9481141, 517310894, 32922122485, 2393313188039, ...
1, 1, 2, 14, 258, 7686, 309322, 15604654, 945111938, 66766075046, 5387893860042, ...
		

Crossrefs

Cf. A051295 (row n=1), A112934 (row n=2), A113144 (row n = 3), A113145 (row n=4), A113146 (row n=5), A113147 (row n = 6), A113148 (row n=7), A113149 (row n=8).

Programs

  • PARI
    {T(n,k)=local(x=X+X*O(X^k),y=Y+Y*O(Y^k));A=1/(1-x*y*sum(j=0,k,x^j*prod(i= 0,j-1,y+i)));return(sum(m=0,k,n^(k-m)*polcoeff(polcoeff(A,k,X),m,Y)))}

Formula

T(n, k) = Sum_{j=0..k} n^(k-j)*A111146(k, j).
Showing 1-1 of 1 results.