cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113173 Ascending descending base exponent transform of semiprimes (A001358).

Original entry on oeis.org

256, 5392, 315361, 11667713, 717360537, 83932270482, 27775696582531, 22260761742531649, 109563850113131234720, 2013390472722146301196, 1899501614194512059559835, 85600281199526209989968735
Offset: 1

Views

Author

Jonathan Vos Post, Jan 07 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. a(7) is itself semiprime. The smallest primes in this sequence are a(3) = 315361 and a(4) = 11667713. What is the next prime?

Examples

			a(1) = 256 because semiprime(1)^semiprime(1) = 4^4 = 256.
a(2) = 5392 because prime(1)^prime(2) + prime(2)^prime(1) = 4^6 + 6^4 = 5392.
a(3) = 315361 because 4^9 + 6^6 + 9^4 = 315361.
a(4) = 11667713 = 4^10 + 6^9 + 9^6 + 10^4.
a(5) = 717360537 = 4^14 + 6^10 + 9^9 + 10^6 + 14^4.
a(6) = 83932270482 = 4^15 + 6^14 + 9^10 + 10^9 + 14^6 + 15^4.
a(7) = 27775696582531 = 4^21 + 6^15 + 9^14 + 10^10 + 14^9 + 15^6 + 21^4.
a(8) = 22260761742531649 = 4^22 + 6^21 + 9^15 + 10^14 + 14^10 + 15^9 + 21^6 + 22^4.
a(9) = 109563850113131234720 = 4^25 + 6^22 + 9^21 + 10^15 + 14^14 + 15^10 + 21^9 + 22^6 + 25^4.
		

Crossrefs

Programs

  • Mathematica
    A001358[A001358%5Bk%5D%5B%5Bk%5D%5D)%5E((A001358%5Bn%20-%20k%20+%201%5D%5B%5Bn%20-%20k%20+%201%5D%5D)),%20%7Bk,%201,%20n%7D%5D,%20%7Bn,%201,%2010%7D%5D%20(*%20_G.%20C.%20Greubel">] := Select[Range[100], PrimeOmega[#] == 2 &]; Table[Sum[(A001358[k][[k]])^((A001358[n - k + 1][[n - k + 1]])), {k, 1, n}], {n, 1, 10}] (* _G. C. Greubel, May 19 2017 *)

Formula

a(n) = Sum_{i=1..n} (semiprime(i))^(semiprime(n-i+1)).
a(n) = Sum_{i=1..n} (A001358(i))^(A001358(n-i+1)).