cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A113180 Expansion of 1/sqrt((1-2*x)^2-8*x^4).

Original entry on oeis.org

1, 2, 4, 8, 20, 56, 160, 448, 1240, 3440, 9632, 27200, 77216, 219840, 627200, 1793024, 5136480, 14743232, 42390400, 122064640, 351951232, 1015990528, 2936079360, 8493340672, 24591589120, 71262291456, 206666232832, 599778166784
Offset: 0

Views

Author

Paul Barry, Oct 16 2005

Keywords

Comments

In general, 1/sqrt((1-a*x)^2-4*b*x^4) expands to Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*b^k*a^(n-4k).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-2*x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
  • PARI
    x='x+O('x^50); Vec(1/sqrt((1-2*x)^2 - 8*x^4)) \\ G. C. Greubel, Mar 17 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*2^(n-3k).
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+2*sqrt(2)))^n / (sqrt(6+5*sqrt(2)-sqrt(70+56*sqrt(2))) * sqrt(Pi*n)). - Vaclav Kotesovec, Jun 23 2014
Showing 1-1 of 1 results.