A113187 Inverse of twin-prime related triangle A111125.
1, -3, 1, 10, -5, 1, -35, 21, -7, 1, 126, -84, 36, -9, 1, -462, 330, -165, 55, -11, 1, 1716, -1287, 715, -286, 78, -13, 1, -6435, 5005, -3003, 1365, -455, 105, -15, 1, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1, 352716, -293930, 203490
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: -3 1 2: 10 -5 1 3: -35 21 -7 1 4: 126 -84 36 -9 1 5: -462 330 -165 55 -11 1 6: 1716 -1287 715 -286 78 -13 1 7: -6435 5005 -3003 1365 -455 105 -15 1 8: 24310 -19448 12376 -6188 2380 -680 136 -17 1 9: -92378 75582 -50388 27132 -11628 3876 -969 171 -19 1 ... Reformatted by Wolfdieter Lang, Oct 17 2012 From Wolfdieter Lang, Oct 18 2012: (Start) Recurrence from the Z-sequence [-3,1] (see a comment above): T(3,0) = -3*T(2,0) + 1*T(2,1) = -3*10 + (-5) = -35. Recurrence from the A-sequence [1,-2,1]: T(5,1) = 1*T(4,0) -2*T(4,1) + 1*T(4,2) = 126 -2*(-84) +36 = 330. (End)
Links
- Indranil Ghosh, Rows 0..125 of triangle, flattened
Formula
Riordan array ((sqrt(1+4x)-1)/(2x*sqrt(1+4x)), (1+2x-sqrt(1+4x))/(2x)).
T(n, k)=(-1)^(n-k)*C(2n+1, n+k+1); T(n, k)=sum{j=0..n, (-1)^(n-k)*C(2n-j, n-j)C(j, k)}.
O.g.f. column k: ((2-c(-x))/(1+4*x))*(1-c(-x))^k, with the o.g.f. c(x) of A000108 (Catalan), k>=0. From the Riordan property given above. - Wolfdieter Lang, Oct 17 2012
O.g.f. of the row polynomials R(n,x) = sum(T(n,k)*x^k,k=0..n): ((2-c(-z))/(1+4*z))/(1-x*(1-c(-z))) = 1/((1+4*z)*(x-(1-x)^2*z))*(x+2*x*z-2*z + (1+x)*z*c(-z)), with the o.g.f. c(x) of A000108. - Wolfdieter Lang, Oct 18 2012
Comments