A113216 Triangle of polynomials P(n,x) of degree n related to Pi (see comment) and derived from Padé approximation to exp(x).
1, 1, 2, 1, -6, -12, 1, 12, -60, -120, 1, -20, -180, 840, 1680, 1, 30, -420, -3360, 15120, 30240, 1, -42, -840, 10080, 75600, -332640, -665280, 1, 56, -1512, -25200, 277200, 1995840, -8648640, -17297280, 1, -72, -2520, 55440, 831600, -8648640, -60540480, 259459200, 518918400, 1, 90, -3960, -110880
Offset: 0
Examples
P(5,x) = x^5 + 30*x^4 - 420*x^3 - 3360*x^2 + 15120*x + 30240. Triangle begins: 1; 1,2; 1,-6,-12; 1,12,-60,-120; 1,-20,-180,840,1680; 1,30,-420,-3360,15120,30240; 1,-42,-840,10080,75600,-332640,-665280; ...
Programs
-
PARI
P(n,x)=if(n<2,if(n%2,x+2,1),(4*n-2)*P(n-1,x)-x^2*P(n-2,x))
-
PARI
P(n,x)=sum(i=0,n,x^i*(-1)^floor(i/2)/(n-i)!/i!*(2*n-i)!)
Formula
P(0, x) = 1, P(1, x) = x+2, P(n, x) = (4*n-2)*P(n-1, x)-x^2*P(n-2, x).
P(n, x) = Sum_{0<=i<=n} (-1)^floor(i/2)*(2n-i)!/i!/(n-i)!*x^i.
Comments