cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275527 Number of distinct classes of permutations of length n under reversal and complement to n+1.

Original entry on oeis.org

1, 1, 1, 4, 12, 64, 360, 2544, 20160, 181632
Offset: 1

Views

Author

Olivier Gérard, Jul 31 2016

Keywords

Comments

Let us consider two permutations to be equivalent if they can be obtained from each other by cyclic rotation (12345->(23451,34512,45123,51234) or n+1-complement (31254->35412), or a combination of those two transformations (they commute with each other). a(n) is the number of classes.
We obtain the same number of classes if the transformations are (addition of a constant modulo n and reversal (12345->54321)) but not the same set of representatives.
It seems probable that a(2n+1) = (2n)!/2
This sequence may be related to A113247 (and A113248) as they share a common dissection 1, 4, 64, 2544, 181632. The fact that they count permutation classes for the major index is a further indication.
Number of path necklaces, defined as equivalence classes of (labeled, undirected) Hamiltonian paths under rotation of the vertices. The cycle version is A000939. - Gus Wiseman, Mar 02 2019

Examples

			Examples of permutation representatives. The representative is chosen to be the first of the class in lexicographic order.
n=4 case addition mod n and reversal
1234, 1243, 1324, 1423.
n=4 case rotation and complement
1234, 1243, 1324, 1342.
.
n=5 case addition mod n and reversal
12345, 12354, 12435, 12453, 12534, 13245, 13425, 13452, 13524, 14235, 14523, 15234.
n=5 case rotation and complement
12345, 12354, 12435, 12453, 12534, 13245, 13425, 13452, 13524, 14235, 14325, 14352.
		

Crossrefs

Cf. A000939, A000940, A002619, A089066, A262480 (other symmetry classes of permutations).
Cf. A193651 (inspiration for a(2n)).

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,8}] (* Gus Wiseman, Mar 02 2019 *)

Formula

(Conjecture). If n odd a(n)=((n - 1))!/2. If n even a(n)= 1/2 (n - 2)!! (1 + ( n - 1)!!).

A113248 Number of permutations pi in S_n such that maj pi and maj pi^(-1) have opposite parity where maj is the major index. Equivalently, the number of pi such that maj pi and inv pi have opposite parity where inv is the inversion number.

Original entry on oeis.org

0, 0, 2, 8, 56, 336, 2496, 19968, 181248, 1812480, 19956480, 239477760, 3113487360, 43588823040, 653836861440, 10461389783040, 177843708887040, 3201186759966720, 60822550111518720, 1216451002230374400
Offset: 0

Views

Author

Bruce E. Sagan, Oct 20 2005

Keywords

Comments

a(2n) and a(2n+1) are both divisible by 2^n n! a(2n) = 2n a(2n-1) The number of pi in S_n such that maj pi is even and maj pi^(-1) is odd is exactly half of a(n)

Examples

			a(3)=2 because the following 2 permutations in S_3 have opposite parity for their major index and the major index of their inverse: 231, 312.
		

Crossrefs

Cf. A113247.

Formula

a(2n) = 2 n^2 a(2n-2) + 2 n (n-1) b(2n-2) and a(2n+1) = 2 n (n+1) a(2n-1) + 2 n^2 b(2n-1) where b(n) is sequence A113247
Showing 1-2 of 2 results.