A275527 Number of distinct classes of permutations of length n under reversal and complement to n+1.
1, 1, 1, 4, 12, 64, 360, 2544, 20160, 181632
Offset: 1
Examples
Examples of permutation representatives. The representative is chosen to be the first of the class in lexicographic order. n=4 case addition mod n and reversal 1234, 1243, 1324, 1423. n=4 case rotation and complement 1234, 1243, 1324, 1342. . n=5 case addition mod n and reversal 12345, 12354, 12435, 12453, 12534, 13245, 13425, 13452, 13524, 14235, 14523, 15234. n=5 case rotation and complement 12345, 12354, 12435, 12453, 12534, 13245, 13425, 13452, 13524, 14235, 14325, 14352.
Links
- Wikipedia, Hamiltonian path.
- Wikipedia, Necklace (combinatorics).
- Gus Wiseman, Inequivalent representatives of the a(5) = 12 path necklaces.
- Gus Wiseman, Inequivalent representatives of the a(6) = 54 path necklaces.
Crossrefs
Programs
-
Mathematica
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])]; Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,8}] (* Gus Wiseman, Mar 02 2019 *)
Formula
(Conjecture). If n odd a(n)=((n - 1))!/2. If n even a(n)= 1/2 (n - 2)!! (1 + ( n - 1)!!).
Comments