A000939 Number of inequivalent n-gons.
1, 1, 1, 2, 4, 14, 54, 332, 2246, 18264, 164950, 1664354, 18423144, 222406776, 2905943328, 40865005494, 615376173184, 9880209206458, 168483518571798, 3041127561315224, 57926238289970076, 1161157777643184900, 24434798429947993054, 538583682082245127336
Offset: 1
Examples
Possibilities for n-gons without distinguished vertex can be encoded as permutation classes of vertices, two permutations being equivalent if they can be obtained from each other by circular rotation, translation mod n or complement to n+1. n=3: 123. n=4: 1234, 1243. n=5: 12345, 12354, 12453, 13524. n=6: 123456, 123465, 123564, 123645, 123654, 124365, 124635, 124653, 125364, 125463, 125634, 126435, 126453, 135264.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Georg Fischer, Table of n, a(n) for n = 1..450 (first 100 terms by T. D. Noe)
- S. W. Golomb and L. R. Welch, On the enumeration of polygons, Amer. Math. Monthly, 67 (1960), 349-353.
- S. W. Golomb and L. R. Welch, On the enumeration of polygons, Amer. Math. Monthly, 67 (1960), 349-353. [Annotated scanned copy]
- Samuel Herman and Eirini Poimenidou, Orbits of Hamiltonian Paths and Cycles in Complete Graphs, arXiv:1905.04785 [math.CO], 2019.
- A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, 7 (1998), no. 1, 93-114.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle.
- Wikipedia, Hamiltonian path.
- Wikipedia, Polygon.
- Gus Wiseman, Inequivalent representatives of the a(6) = 14 cycle necklaces.
- Gus Wiseman, Inequivalent representatives of the a(7) = 54 n-gons.
Crossrefs
Programs
-
Maple
with(numtheory): # for n odd: Ed:= proc(n) local t1, d; t1:=0; for d from 1 to n do if n mod d = 0 then t1:= t1+phi(n/d)^2*d!*(n/d)^d fi od: t1/(2*n^2) end: # for n even: Ee:= proc(n) local t1, d; t1:= 2^(n/2)*(n/2)*(n/2)!; for d from 1 to n do if n mod d = 0 then t1:= t1+ phi(n/d)^2*d!*(n/d)^d; fi od: t1/(2*n^2) end: A000939:= n-> if n mod 2 = 0 then ceil(Ee(n)) else ceil(Ed(n)); fi: seq(A000939(n), n=1..25);
-
Mathematica
a[n_] := (t = If[OddQ[n], 0, 2^(n/2)*(n/2)*(n/2)!]; Do[If[Mod[n, d]==0, t = t+EulerPhi[n/d]^2*d!*(n/d)^d], {d, 1, n}]; t/(2*n^2)); a[1] := 1; a[2] := 1; Print[a /@ Range[1, 450]] (* Jean-François Alcover, May 19 2011, after Maple prog. *) rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])]; Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,8}] (* Gus Wiseman, Mar 02 2019 *)
-
PARI
a(n)={if(n<3, n>=0, (if(n%2, 0, (n/2-1)!*2^(n/2-2)) + sumdiv(n, d, eulerphi(n/d)^2 * d! * (n/d)^d)/n^2)/2)} \\ Andrew Howroyd, Aug 17 2019
Formula
For formula see Maple lines.
a(2*n + 1) = A002619(2*n + 1)/2 for n > 0; a(2*n) = (A002619(2*n) + A002866(n-1))/2 for n > 1. - Andrew Howroyd, Aug 17 2019
a(n) ~ sqrt(2*Pi)/2 * n^(n-3/2) / e^n. - Ludovic Schwob, Nov 03 2022
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 05 2004
Added a(1) = 1 and a(2) = 1 by Gus Wiseman, Mar 02 2019
Comments