cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000939 Number of inequivalent n-gons.

Original entry on oeis.org

1, 1, 1, 2, 4, 14, 54, 332, 2246, 18264, 164950, 1664354, 18423144, 222406776, 2905943328, 40865005494, 615376173184, 9880209206458, 168483518571798, 3041127561315224, 57926238289970076, 1161157777643184900, 24434798429947993054, 538583682082245127336
Offset: 1

Views

Author

Keywords

Comments

Here two n-gons are said to be equivalent if they differ in starting point, orientation, or by a rotation (but not by a reflection - for that see A000940).
Number of cycle necklaces on n vertices, defined as equivalence classes of (labeled, undirected) Hamiltonian cycles under rotation of the vertices. The path version is A275527. - Gus Wiseman, Mar 02 2019

Examples

			Possibilities for n-gons without distinguished vertex can be encoded as permutation classes of vertices, two permutations being equivalent if they can be obtained from each other by circular rotation, translation mod n or complement to n+1.
n=3: 123.
n=4: 1234, 1243.
n=5: 12345, 12354, 12453, 13524.
n=6: 123456, 123465, 123564, 123645, 123654, 124365, 124635, 124653, 125364, 125463, 125634, 126435, 126453, 135264.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000940. Bisections give A094154, A094155.
For star polygons see A231091.

Programs

  • Maple
    with(numtheory):
    # for n odd:
    Ed:= proc(n) local t1, d; t1:=0; for d from 1 to n do
           if n mod d = 0 then t1:= t1+phi(n/d)^2*d!*(n/d)^d fi od:
           t1/(2*n^2)
         end:
    # for n even:
    Ee:= proc(n) local t1, d; t1:= 2^(n/2)*(n/2)*(n/2)!; for d
           from 1 to n do if n mod d = 0 then t1:= t1+
           phi(n/d)^2*d!*(n/d)^d; fi od: t1/(2*n^2)
         end:
    A000939:= n-> if n mod 2 = 0 then ceil(Ee(n)) else ceil(Ed(n)); fi:
    seq(A000939(n), n=1..25);
  • Mathematica
    a[n_] := (t = If[OddQ[n], 0, 2^(n/2)*(n/2)*(n/2)!]; Do[If[Mod[n, d]==0, t = t+EulerPhi[n/d]^2*d!*(n/d)^d], {d, 1, n}]; t/(2*n^2)); a[1] := 1; a[2] := 1; Print[a /@ Range[1, 450]] (* Jean-François Alcover, May 19 2011, after Maple prog. *)
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,8}] (* Gus Wiseman, Mar 02 2019 *)
  • PARI
    a(n)={if(n<3, n>=0, (if(n%2, 0, (n/2-1)!*2^(n/2-2)) + sumdiv(n, d, eulerphi(n/d)^2 * d! * (n/d)^d)/n^2)/2)} \\ Andrew Howroyd, Aug 17 2019

Formula

For formula see Maple lines.
a(2*n + 1) = A002619(2*n + 1)/2 for n > 0; a(2*n) = (A002619(2*n) + A002866(n-1))/2 for n > 1. - Andrew Howroyd, Aug 17 2019
a(n) ~ sqrt(2*Pi)/2 * n^(n-3/2) / e^n. - Ludovic Schwob, Nov 03 2022

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 05 2004
Added a(1) = 1 and a(2) = 1 by Gus Wiseman, Mar 02 2019

A002619 Number of 2-colored patterns on an n X n board.

Original entry on oeis.org

1, 1, 2, 3, 8, 24, 108, 640, 4492, 36336, 329900, 3326788, 36846288, 444790512, 5811886656, 81729688428, 1230752346368, 19760413251956, 336967037143596, 6082255029733168, 115852476579940152, 2322315553428424200, 48869596859895986108
Offset: 1

Views

Author

Keywords

Comments

Also number of orbits in the set of circular permutations (up to rotation) under cyclic permutation of the elements. - Michael Steyer, Oct 06 2001
Moser shows that (1/n^2)*Sum_{d|n} k^d*phi(n/d)^2*(n/d)^d*d! is an integer. Here we have k=1. - Michel Marcus, Nov 02 2012

Examples

			n=6: {(123456)}, {(135462), (246513), (351624)} and {(124635), (235146), (346251), (451362), (562413), (613524)} are 3 of the 24 orbits, consisting of 1, 3 and 6 permutations, respectively.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
  • K. Yordzhev, On the cardinality of a factor set in the symmetric group. Asian-European Journal of Mathematics, Vol. 7, No. 2 (2014) 1450027, doi: 10.1142/S1793557114500272, ISSN:1793-5571, E-ISSN:1793-7183, Zbl 1298.05035.

Crossrefs

Cf. A000010.
Cf. A000939, A000940, A089066, A262480, A275527 (other classes of permutations under various symmetries).

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(phi(div[j])^2*(n/div[j])!*div[j]^(n/div[j]),j=1..tau(n))/n^2 end: seq(a(n),n=1..23); # Emeric Deutsch, Aug 23 2005
  • Mathematica
    a[n_] := EulerPhi[#]^2*(n/#)!*#^(n/#)/n^2 & /@ Divisors[n] // Total; a /@ Range[23] (* Jean-François Alcover, Jul 11 2011, after Emeric Deutsch *)
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)^2*d!*(n/d)^d)/n^2} \\ Andrew Howroyd, Sep 09 2018
    
  • Python
    from sympy import totient, factorial, divisors
    def A002619(n): return sum(totient(m:=n//d)**2*factorial(d)*m**d for d in divisors(n,generator=True))//n**2 # Chai Wah Wu, Nov 07 2022

Formula

a(n) = Sum_{k|n} u(n, k)/(nk), where u(n, k) = A047918(n, k).
a(n) = (1/n^2)*Sum_{d|n} phi(d)^2*(n/d)!*d^(n/d), where phi is Euler's totient function (A000010). - Emeric Deutsch, Aug 23 2005
From Richard L. Ollerton, May 09 2021: (Start)
Let A(n,k) = (1/n^2)*Sum_{d|n} k^d*phi(n/d)^2*(n/d)^d*d!, then:
A(n,k) = (1/n^2)*Sum_{i=1..n} k^gcd(n,i)*phi(n/gcd(n,i))*(n/gcd(n,i))^gcd(n,i)*gcd(n,i)!.
A(n,k) = (1/n^2)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))^2*(gcd(n,i))^(n/gcd(n,i))*(n/gcd(n,i))!.
a(n) = A(n,1). (End)

A061417 Number of permutations up to cyclic rotations; permutation siteswap necklaces.

Original entry on oeis.org

1, 2, 4, 10, 28, 136, 726, 5100, 40362, 363288, 3628810, 39921044, 479001612, 6227066928, 87178295296, 1307675013928, 20922789888016, 355687438476444, 6402373705728018, 121645100594641896, 2432902008177690360, 51090942175425331320, 1124000727777607680022
Offset: 1

Views

Author

Antti Karttunen, May 02 2001

Keywords

Comments

If permutations are converted to (i,p(i)) permutation arrays, then this automorphism is obtained by their "SW-NE diagonal toroidal shifts" (see Matthias Engelhardt's Java program in A006841), while the Maple procedure below converts each permutation to a siteswap pattern (used in juggling), rotates it by one digit and converts the resulting new (or same) siteswap pattern back to a permutation.
When the subset of permutations listed by A064640 are subjected to the same automorphism one gets A002995.
The number of conjugacy classes of the symmetric group of degree n when conjugating only with the cyclic permutation group of degree n. - Attila Egri-Nagy, Aug 15 2014
Also the number of equivalence classes of permutations of {1...n} under the action of rotation of vertices in the cycle decomposition. The corresponding action on words applies m -> m + 1 for m < n and n -> 1, and rotates once to the right. For example, (24531) first becomes (35142) under the application of cyclic rotation, and then is rotated right to give (23514). - Gus Wiseman, Mar 04 2019

Examples

			If I have a five-element permutation like 25431, in cycle notation (1 2 5)(3 4), I mark the numbers 1-5 clockwise onto a circle and draw directed edges from 1 to 2, from 2 to 5, from 5 to 1 and a double-way edge between 3 and 4. All the 5-element permutations that produce some rotation (discarding the labels of the nodes) of that chord diagram belong to the same equivalence class with 25431. The sequence gives the count of such equivalence classes.
		

Crossrefs

Cf. A006841, A060495. For other Maple procedures, see A060501 (Perm2SiteSwap2), A057502 (CountCycles), A057509 (rotateL), A060125 (PermRank3R and permul).
A061417[p] = A061860[p] = (p-1)!+(p-1) for all prime p's.
A064636 (derangements-the same automorphism).
A061417[n] = A064649[n]/n.
Cf. A000031, A000939, A002995, A008965, A060223, A064640, A086675 (digraphical necklaces), A179043, A192332, A275527 (path necklaces), A323858, A323859, A323870, A324513, A324514 (aperiodic permutations).

Programs

  • GAP
    List([1..10],n->Size( OrbitsDomain( CyclicGroup(IsPermGroup,n), SymmetricGroup( IsPermGroup,n),\^))); # Attila Egri-Nagy, Aug 15 2014
    
  • Haskell
    a061417 = sum . a047917_row  -- Reinhard Zumkeller, Mar 19 2014
    
  • Maple
    Algebraic formula: with(numtheory); SSRPCC := proc(n) local d,s; s := 0; for d in divisors(n) do s := s + phi(n/d)*((n/d)^d)*(d!); od; RETURN(s/n); end;
    Empirically: with(group); SiteSwapRotationPermutationCycleCounts := proc(upto_n) local b,u,n,a,r; a := []; for n from 1 to upto_n do b := []; u := n!; for r from 0 to u-1 do b := [op(b),1+PermRank3R(SiteSwap2Perm1(rotateL(Perm2SiteSwap2(PermUnrank3Rfix(n,r)))))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
    PermUnrank3Rfixaux := proc(n,r,p) local s; if(0 = n) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Rfixaux(n-1, r-(s*((n-1)!)), permul(p,[[n,n-s]]))); fi; end;
    PermUnrank3Rfix := (n,r) -> convert(PermUnrank3Rfixaux(n,r,[]),'permlist',n);
    SiteSwap2Perm1 := proc(s) local e,n,i,a; n := nops(s); a := []; for i from 1 to n do e := ((i+s[i]) mod n); if(0 = e) then e := n; fi; a := [op(a),e]; od; RETURN(convert(invperm(convert(a,'disjcyc')),'permlist',n)); end;
  • Mathematica
    a[n_] := (1/n)*Sum[ EulerPhi[n/d]*(n/d)^d*d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 09 2012, from formula *)
    Table[Length[Select[Permutations[Range[n]],#==First[Sort[NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]]]&]],{n,8}] (* Gus Wiseman, Mar 04 2019 *)
  • PARI
    a(n) = (1/n)*sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import divisors, factorial, totient
    def a(n):
        return sum(totient(n//d)*(n//d)**d*factorial(d) for d in divisors(n))//n
    print([a(n) for n in range(1, 22)]) # Indranil Ghosh, Apr 10 2017

Formula

a(n) = (1/n)*Sum_{d|n} phi(n/d)*((n/d)^d)*(d!).

A192332 For n >= 3, draw a regular n-sided polygon and its n(n-3)/2 diagonals, so there are n(n-1)/2 lines; a(n) is the number of ways to choose a subset of these lines (subsets differing by a rotation are regarded as identical). a(1)=1, a(2)=2 by convention.

Original entry on oeis.org

1, 2, 4, 22, 208, 5560, 299600, 33562696, 7635498336, 3518440564544, 3275345183542208, 6148914696963883712, 23248573454127484129024, 176848577040808821410837120, 2704321280486889389864215362560, 83076749736557243209409446411255936, 5124252113632955685095523500148980125696, 634332307869315502692705867068871886072665600
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2011

Keywords

Comments

Suggested by A192314.
Also the number of graphical necklaces with n vertices. We define a graphical necklace to be a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. These are a kind of partially labeled graphs. - Gus Wiseman, Mar 04 2019

Examples

			From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(4) = 22 graphical necklace edge-sets:
  {}  {}      {}              {}
      {{12}}  {{12}}          {{12}}
              {{12}{13}}      {{13}}
              {{12}{13}{23}}  {{12}{13}}
                              {{12}{14}}
                              {{12}{24}}
                              {{12}{34}}
                              {{13}{24}}
                              {{12}{13}{14}}
                              {{12}{13}{23}}
                              {{12}{13}{24}}
                              {{12}{13}{34}}
                              {{12}{14}{23}}
                              {{12}{24}{34}}
                              {{12}{13}{14}{23}}
                              {{12}{13}{14}{24}}
                              {{12}{13}{14}{34}}
                              {{12}{13}{24}{34}}
                              {{12}{14}{23}{34}}
                              {{12}{13}{14}{23}{24}}
                              {{12}{13}{14}{23}{34}}
                              {{12}{13}{14}{23}{24}{34}}
(End)
		

Crossrefs

Cf. A192314, A191563 (orbits under dihedral group).
Cf. A000031, A000939 (cycle necklaces), A008965, A059966, A060223, A061417, A086675 (digraph version), A184271, A275527, A323858, A324461, A324463, A324464.

Programs

  • Maple
    with(numtheory);
    f:=proc(n) local t0, t1, d; t0:=0; t1:=divisors(n);
    for d in t1 do
    if d mod 2 = 0 then t0:=t0+phi(d)*2^(n^2/(2*d))
    else t0:=t0+phi(d)*2^(n*(n-1)/(2*d)); fi; od; t0/n; end;
    [seq(f(n), n=1..30)];
  • Mathematica
    Table[ 1/n* Plus @@ Map[Function[d, EulerPhi[d]*2^((n*(n - Mod[d, 2])/2)/d)], Divisors[n]], {n, 1, 20}]  (* Olivier Gérard, Aug 27 2011 *)
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,0,5}] (* Gus Wiseman, Mar 04 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if (d%2, eulerphi(d)*2^(n*(n-1)/(2*d)), eulerphi(d)*2^(n^2/(2*d))))/n; \\ Michel Marcus, Mar 08 2019

Formula

a(n) = (1/n)*(Sum_{d|n, d odd} phi(d)*2^(n*(n-1)/(2*d)) + Sum_{d|n, d even} phi(d)*2^(n^2/(2*d))).

A086675 Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.

Original entry on oeis.org

1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003

Keywords

Comments

Also the number of digraphical necklaces with n vertices. A digraphical necklace is defined to be a directed graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of directed graphs under rotation of the vertices. These are a kind of partially labeled digraphs. - Gus Wiseman, Mar 04 2019

Examples

			From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
  {}
  {(1,1)}
  {(1,2)}
  {(1,1),(1,2)}
  {(1,1),(2,1)}
  {(1,1),(2,2)}
  {(1,2),(2,1)}
  {(1,1),(1,2),(2,1)}
  {(1,1),(1,2),(2,2)}
  {(1,1),(1,2),(2,1),(2,2)}
(End)
		

Crossrefs

Cf. A000031 (binary necklaces), A000939 (cycle necklaces), A008965, A060690, A061417 (permutation necklaces), A184271, A192332 (graphical necklaces), A275527 (path necklaces), A323858 (toroidal necklaces), A323870.

Programs

  • Mathematica
    Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
    (* second program *)
    rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
    Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)

Formula

a(n) = (1/n)*Sum_{ d divides n } phi(d)*2^(n^2/d) for n > 0, a(0) = 1.

Extensions

More terms from Wouter Meeussen, Jul 29 2003
a(0)=1 prepended by Gus Wiseman, Mar 04 2019

A324513 Number of aperiodic cycle necklaces with n vertices.

Original entry on oeis.org

1, 0, 0, 0, 2, 7, 51, 300, 2238, 18028, 164945, 1662067, 18423138, 222380433, 2905942904, 40864642560, 615376173176, 9880203467184, 168483518571789, 3041127459127222, 57926238289894992, 1161157775616335125, 24434798429947993043, 538583682037962702384
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

We define an aperiodic cycle necklace to be an equivalence class of (labeled, undirected) Hamiltonian cycles under rotation of the vertices such that all n of these rotations are distinct.

Crossrefs

Cf. A000740, A000939, A001037 (binary Lyndon words), A008965, A059966 (Lyndon compositions), A060223 (normal Lyndon words), A061417, A064852 (if cycle is oriented), A086675, A192332, A275527, A323866 (aperiodic toroidal arrays), A323871.

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&&UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
  • PARI
    a(n)={if(n<3, n==0||n==1, (if(n%2, 0, -(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2))/2)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = A324512(n)/n.
a(2*n+1) = A064852(2*n+1)/2 for n > 0; a(2*n) = (A064852(2*n) - A002866(n-1))/2 for n > 1. - Andrew Howroyd, Aug 16 2019

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019

A324464 Number of connected graphical necklaces with n vertices.

Original entry on oeis.org

1, 0, 1, 2, 13, 148, 4530, 266614, 31451264, 7366255436, 3449652145180, 3240150686268514, 6112883022923529310, 23174784819204929919428, 176546343645071836902594288, 2701845395848698682311893154024, 83036184895986451215378727412638816, 5122922885438069578928905234650082410736
Offset: 0

Views

Author

Gus Wiseman, Mar 01 2019

Keywords

Comments

A graphical necklace is a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. These are a kind of partially labeled graphs.

Examples

			Inequivalent representatives of the a(2) = 1 through a(4) = 13 graphical necklaces:
  {{12}}  {{12}{13}}      {{12}{13}{14}}
          {{12}{13}{23}}  {{12}{13}{24}}
                          {{12}{13}{34}}
                          {{12}{14}{23}}
                          {{12}{24}{34}}
                          {{12}{13}{14}{23}}
                          {{12}{13}{14}{24}}
                          {{12}{13}{14}{34}}
                          {{12}{13}{24}{34}}
                          {{12}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}}
                          {{12}{13}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}{34}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[csm[#]]<=1,#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
  • PARI
    \\ B(n,d) is graphs on n*d points invariant under 1/d rotation.
    B(n,d)={2^(n*(n-1)*d/2 + n*(d\2))}
    D(n,d)={my(v=vector(n, i, B(i,d)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); sumdiv(n, e, eulerphi(d*e) * moebius(e) * u[n/e] * e^(n/e-1))}
    a(n)={if(n<=1, n==0, sumdiv(n, d, D(n/d,d))/n)} \\ Andrew Howroyd, Jan 24 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 24 2023

A089066 Number of distinct classes of permutations of length n under reversal, rotation and complement to n+1.

Original entry on oeis.org

1, 1, 1, 3, 8, 38, 192, 1320, 10176, 91296, 908160, 9985920, 119761920, 1556847360, 21794734080, 326920043520, 5230700052480, 88921882828800, 1600593472880640, 30411275613143040, 608225502973132800
Offset: 1

Views

Author

Ray Jerome, Dec 02 2003, Jul 17 2007

Keywords

Comments

Contribution from Olivier Gérard, Jul 31 2016: (Start)
Let us consider two permutations to be equivalent if they can be obtained from each other by reversal (12345->54321), cyclic rotation (12345->(23451,34512,45123,51234), n+1-complement (31254->35412), or a combination of those three transformations (they commute with each other). a(n) is the number of classes. It is strictly inferior to (n-1)! for n>1.
If rotation is replaced by addition of a constant modulo n, one obtains the same number of classes but not exactly the same permutations starting n=5.
(End)
Original explanation by R. Jerome : Generate all permutations of a string of length n, such as 1234, which has length 4; there are n!=24 of these. Now remove all that have cycles less than 4 characters long; if you only use cyclic notation and not array notation then of the n! possibly only (n-1)! need to be considered. Then calculate the Inverse, Vertical reflection, [VErt reflection inverse], Rotation by 180 degree and [ROt by 180 deg inverse]. If any of these already exist on the list then this permutation is not distinct. Items in []'s are unnecessary since VE(x)=V(I(x))=I(V(x))=R(x) and RO(x)=R(I(x))=I(R(x))=V(x). There are some that are rotationally symmetric and some that are vertically symmetric (only possible for even lengths), but the majority are nonsymmetric.

Examples

			Examples of permutations (notations of R. Jerome):
Rotationally symmetric: x1=R(x1)=124356=VE(x1), I(x1)=165342=V(x1)=RO(x1)
Vertically symmetric: x2=V(x2)=132645=RO(x2)), I(x2)=154623=R(x2)=VE(x2)
Nonsymmetric: x3=135264, I(x3)=146253, R(x3)=152463=VE(x3), V(x3)=136425=RO(x3)
a(4)=3: there are 3 distinct permutations of exactly length 4, out of a field of 4!=24 possible permutations. In cyclic notation they are designated (1234), (1243) and (1324). The others, (1342), (1423) and (1432), are equal to inverses, vertical mirror images or 180-degree rotations of those 3. The remaining 18 have cycles of length 1, 2 or 3, such as (143)(2) having a permutation of length 3 and a fixed cycle and (14)(23) having 2 permutations of length 2.
Examples of permutation representatives (from Olivier Gerard)
The representative is chosen to be the first of the class in lexicographic order.
n=4 both cases
1234,1243,1324
n=5 case rotation, reversal, complement
12345,12354,12435,12453,12534,13425,13524,14325
n=5 case translation mod, reversal, complement
12345,12354,12435,12453,12534,13425,13452,13524
		

Crossrefs

Apart from initial terms, same as A099030. - Ray Jerome, Feb 25 2005
Cf. A000939 (same idea under (rotation, addition mod n and reversal) or (rotation, addition mod n and complement)).
Cf. A000940 (same idea under (rotation, addition mod n, reversal and complement)).
Cf. A001710 (shifted, same idea under (rotation and reversal) or (addition mod n and complement)).
Cf. A002619 (same idea under (rotation and addition mod n)).
Cf. A262480 (same idea under (reversal and complement)).
cf. A275527 (same idea under (rotation and complement) or (addition mod n and reversal)).

Programs

  • Mathematica
    (* From the formula in A099030 *)
    a[n_] := If[n < 3, 1, 1/4 If[Mod[n, 2] == 0,((n - 1)! + (n/2 + 1) (n - 2)!!), ((n - 1)! + (n - 1)!!)]]; Table[a[n], {n, 1, 20}]

Extensions

Definition changed and cross-references added by Olivier Gérard, Jul 31 2016

A324512 Number of aperiodic n-gons.

Original entry on oeis.org

1, 0, 0, 0, 10, 42, 357, 2400, 20142, 180280, 1814395, 19944804, 239500794, 3113326062, 43589143560, 653834280960, 10461394943992, 177843662409312, 3201186852863991, 60822549182544440, 1216451004087794832, 25545471063559372750, 562000363888803839989
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

We define an n-gon to be aperiodic if all n rotations of its vertex set act on the edge set to give distinct n-gons. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).

Examples

			The a(5) = 10 aperiodic polygon edge sets:
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
  • PARI
    a(n)={if(n<3, n==1, (if(n%2, 0, -n*(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n))/2)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = n * A324513(n).

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019
Showing 1-9 of 9 results.