A000939
Number of inequivalent n-gons.
Original entry on oeis.org
1, 1, 1, 2, 4, 14, 54, 332, 2246, 18264, 164950, 1664354, 18423144, 222406776, 2905943328, 40865005494, 615376173184, 9880209206458, 168483518571798, 3041127561315224, 57926238289970076, 1161157777643184900, 24434798429947993054, 538583682082245127336
Offset: 1
Possibilities for n-gons without distinguished vertex can be encoded as permutation classes of vertices, two permutations being equivalent if they can be obtained from each other by circular rotation, translation mod n or complement to n+1.
n=3: 123.
n=4: 1234, 1243.
n=5: 12345, 12354, 12453, 13524.
n=6: 123456, 123465, 123564, 123645, 123654, 124365, 124635, 124653, 125364, 125463, 125634, 126435, 126453, 135264.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Georg Fischer, Table of n, a(n) for n = 1..450 (first 100 terms by T. D. Noe)
- S. W. Golomb and L. R. Welch, On the enumeration of polygons, Amer. Math. Monthly, 67 (1960), 349-353.
- S. W. Golomb and L. R. Welch, On the enumeration of polygons, Amer. Math. Monthly, 67 (1960), 349-353. [Annotated scanned copy]
- Samuel Herman and Eirini Poimenidou, Orbits of Hamiltonian Paths and Cycles in Complete Graphs, arXiv:1905.04785 [math.CO], 2019.
- A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, 7 (1998), no. 1, 93-114.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle.
- Wikipedia, Hamiltonian path.
- Wikipedia, Polygon.
- Gus Wiseman, Inequivalent representatives of the a(6) = 14 cycle necklaces.
- Gus Wiseman, Inequivalent representatives of the a(7) = 54 n-gons.
Cf.
A000031,
A002619,
A002866,
A006125,
A008965,
A059966,
A060223,
A192332,
A275527,
A323858,
A323870,
A324461.
-
with(numtheory):
# for n odd:
Ed:= proc(n) local t1, d; t1:=0; for d from 1 to n do
if n mod d = 0 then t1:= t1+phi(n/d)^2*d!*(n/d)^d fi od:
t1/(2*n^2)
end:
# for n even:
Ee:= proc(n) local t1, d; t1:= 2^(n/2)*(n/2)*(n/2)!; for d
from 1 to n do if n mod d = 0 then t1:= t1+
phi(n/d)^2*d!*(n/d)^d; fi od: t1/(2*n^2)
end:
A000939:= n-> if n mod 2 = 0 then ceil(Ee(n)) else ceil(Ed(n)); fi:
seq(A000939(n), n=1..25);
-
a[n_] := (t = If[OddQ[n], 0, 2^(n/2)*(n/2)*(n/2)!]; Do[If[Mod[n, d]==0, t = t+EulerPhi[n/d]^2*d!*(n/d)^d], {d, 1, n}]; t/(2*n^2)); a[1] := 1; a[2] := 1; Print[a /@ Range[1, 450]] (* Jean-François Alcover, May 19 2011, after Maple prog. *)
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,8}] (* Gus Wiseman, Mar 02 2019 *)
-
a(n)={if(n<3, n>=0, (if(n%2, 0, (n/2-1)!*2^(n/2-2)) + sumdiv(n, d, eulerphi(n/d)^2 * d! * (n/d)^d)/n^2)/2)} \\ Andrew Howroyd, Aug 17 2019
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 05 2004
Added a(1) = 1 and a(2) = 1 by
Gus Wiseman, Mar 02 2019
A061417
Number of permutations up to cyclic rotations; permutation siteswap necklaces.
Original entry on oeis.org
1, 2, 4, 10, 28, 136, 726, 5100, 40362, 363288, 3628810, 39921044, 479001612, 6227066928, 87178295296, 1307675013928, 20922789888016, 355687438476444, 6402373705728018, 121645100594641896, 2432902008177690360, 51090942175425331320, 1124000727777607680022
Offset: 1
If I have a five-element permutation like 25431, in cycle notation (1 2 5)(3 4), I mark the numbers 1-5 clockwise onto a circle and draw directed edges from 1 to 2, from 2 to 5, from 5 to 1 and a double-way edge between 3 and 4. All the 5-element permutations that produce some rotation (discarding the labels of the nodes) of that chord diagram belong to the same equivalence class with 25431. The sequence gives the count of such equivalence classes.
A064636 (derangements-the same automorphism).
Cf.
A000031,
A000939,
A002995,
A008965,
A060223,
A064640,
A086675 (digraphical necklaces),
A179043,
A192332,
A275527 (path necklaces),
A323858,
A323859,
A323870,
A324513,
A324514 (aperiodic permutations).
-
List([1..10],n->Size( OrbitsDomain( CyclicGroup(IsPermGroup,n), SymmetricGroup( IsPermGroup,n),\^))); # Attila Egri-Nagy, Aug 15 2014
-
a061417 = sum . a047917_row -- Reinhard Zumkeller, Mar 19 2014
-
Algebraic formula: with(numtheory); SSRPCC := proc(n) local d,s; s := 0; for d in divisors(n) do s := s + phi(n/d)*((n/d)^d)*(d!); od; RETURN(s/n); end;
Empirically: with(group); SiteSwapRotationPermutationCycleCounts := proc(upto_n) local b,u,n,a,r; a := []; for n from 1 to upto_n do b := []; u := n!; for r from 0 to u-1 do b := [op(b),1+PermRank3R(SiteSwap2Perm1(rotateL(Perm2SiteSwap2(PermUnrank3Rfix(n,r)))))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
PermUnrank3Rfixaux := proc(n,r,p) local s; if(0 = n) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Rfixaux(n-1, r-(s*((n-1)!)), permul(p,[[n,n-s]]))); fi; end;
PermUnrank3Rfix := (n,r) -> convert(PermUnrank3Rfixaux(n,r,[]),'permlist',n);
SiteSwap2Perm1 := proc(s) local e,n,i,a; n := nops(s); a := []; for i from 1 to n do e := ((i+s[i]) mod n); if(0 = e) then e := n; fi; a := [op(a),e]; od; RETURN(convert(invperm(convert(a,'disjcyc')),'permlist',n)); end;
-
a[n_] := (1/n)*Sum[ EulerPhi[n/d]*(n/d)^d*d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 09 2012, from formula *)
Table[Length[Select[Permutations[Range[n]],#==First[Sort[NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]]]&]],{n,8}] (* Gus Wiseman, Mar 04 2019 *)
-
a(n) = (1/n)*sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Indranil Ghosh, Apr 10 2017
-
from sympy import divisors, factorial, totient
def a(n):
return sum(totient(n//d)*(n//d)**d*factorial(d) for d in divisors(n))//n
print([a(n) for n in range(1, 22)]) # Indranil Ghosh, Apr 10 2017
A324461
Number of simple graphs with n vertices and distinct rotations.
Original entry on oeis.org
1, 1, 0, 6, 48, 1020, 32232, 2097144, 268369920, 68719472640, 35184338533920, 36028797018963936, 73786976226114539520, 302231454903657293676480, 2475880078570197599844819072, 40564819207303340847860140736640, 1329227995784915854457062986570792960
Offset: 0
Cf.
A000088,
A000740,
A003436,
A006125,
A027375,
A192314,
A192332,
A306669,
A306715,
A323860,
A323864,
A323867,
A324462 (covering case),
A324463,
A324464.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,0,5}]
-
a(n)={if(n==0, 1, sumdiv(n, d, moebius(d)*2^(n*(n/d-1)/2 + n*(d\2)/d)))} \\ Andrew Howroyd, Aug 15 2019
-
from sympy import mobius, divisors
def A324461(n): return sum(mobius(m:=n//d)<<(n*(d-1)>>1)+d*(m>>1) for d in divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Jul 03 2024
A275527
Number of distinct classes of permutations of length n under reversal and complement to n+1.
Original entry on oeis.org
1, 1, 1, 4, 12, 64, 360, 2544, 20160, 181632
Offset: 1
Examples of permutation representatives. The representative is chosen to be the first of the class in lexicographic order.
n=4 case addition mod n and reversal
1234, 1243, 1324, 1423.
n=4 case rotation and complement
1234, 1243, 1324, 1342.
.
n=5 case addition mod n and reversal
12345, 12354, 12435, 12453, 12534, 13245, 13425, 13452, 13524, 14235, 14523, 15234.
n=5 case rotation and complement
12345, 12354, 12435, 12453, 12534, 13245, 13425, 13452, 13524, 14235, 14325, 14352.
Cf.
A193651 (inspiration for a(2n)).
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,8}] (* Gus Wiseman, Mar 02 2019 *)
A086675
Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.
Original entry on oeis.org
1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
{}
{(1,1)}
{(1,2)}
{(1,1),(1,2)}
{(1,1),(2,1)}
{(1,1),(2,2)}
{(1,2),(2,1)}
{(1,1),(1,2),(2,1)}
{(1,1),(1,2),(2,2)}
{(1,1),(1,2),(2,1),(2,2)}
(End)
-
Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
(* second program *)
rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)
A324513
Number of aperiodic cycle necklaces with n vertices.
Original entry on oeis.org
1, 0, 0, 0, 2, 7, 51, 300, 2238, 18028, 164945, 1662067, 18423138, 222380433, 2905942904, 40864642560, 615376173176, 9880203467184, 168483518571789, 3041127459127222, 57926238289894992, 1161157775616335125, 24434798429947993043, 538583682037962702384
Offset: 1
Cf.
A000740,
A000939,
A001037 (binary Lyndon words),
A008965,
A059966 (Lyndon compositions),
A060223 (normal Lyndon words),
A061417,
A064852 (if cycle is oriented),
A086675,
A192332,
A275527,
A323866 (aperiodic toroidal arrays),
A323871.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&&UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
-
a(n)={if(n<3, n==0||n==1, (if(n%2, 0, -(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2))/2)} \\ Andrew Howroyd, Aug 19 2019
A324462
Number of simple graphs covering n vertices with distinct rotations.
Original entry on oeis.org
1, 0, 0, 3, 28, 765, 26958, 1887277, 252458904, 66376420155, 34508978662350, 35645504882731557, 73356937843604425644, 301275024444053951967585, 2471655539736990372520379226, 40527712706903544100966076156895, 1328579255614092949957261201822704816
Offset: 0
Cf.
A000088,
A000740,
A002494,
A006125,
A006129,
A027375,
A192332,
A323863,
A323864,
A323867,
A323869,
A324461 (non-covering case),
A324463,
A324464.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]]&]],{n,0,5}]
-
a(n)={if(n<1, n==0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2)))))} \\ Andrew Howroyd, Aug 19 2019
A324514
Number of aperiodic permutations of {1..n}.
Original entry on oeis.org
1, 0, 3, 16, 115, 660, 5033, 39936, 362718, 3624920, 39916789, 478953648, 6227020787, 87177645996, 1307674338105, 20922779566080, 355687428095983, 6402373519409856, 121645100408831981, 2432902004460734000, 51090942171698415483, 1124000727695858073380
Offset: 1
The a(4) = 16 aperiodic permutations:
(1243) (1324) (1342) (1423)
(2134) (2314) (2413) (2431)
(3124) (3142) (3241) (3421)
(4132) (4213) (4231) (4312)
-
Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]],{n,6}]
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019
A324463
Number of graphical necklaces covering n vertices.
Original entry on oeis.org
1, 0, 1, 2, 15, 156, 4665, 269618, 31573327, 7375159140, 3450904512841, 3240500443884718, 6113078165054644451, 23175001880311842459108, 176546824267008236554238517, 2701847513793569606737940203894, 83036203475880811677609125194805687
Offset: 0
Inequivalent representatives of the a(2) = 1 through a(4) = 15 graphical necklaces:
{{12}} {{12}{13}} {{12}{34}}
{{12}{13}{23}} {{13}{24}}
{{12}{13}{14}}
{{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
Cf.
A000031,
A002494,
A006129,
A008965,
A184271,
A192332 (non-covering case),
A323858,
A323859,
A323870,
A324461,
A324462,
A324464.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
-
a(n)={if(n<1, n==0, sumdiv(n, d, eulerphi(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2))))/n)} \\ Andrew Howroyd, Aug 19 2019
A324464
Number of connected graphical necklaces with n vertices.
Original entry on oeis.org
1, 0, 1, 2, 13, 148, 4530, 266614, 31451264, 7366255436, 3449652145180, 3240150686268514, 6112883022923529310, 23174784819204929919428, 176546343645071836902594288, 2701845395848698682311893154024, 83036184895986451215378727412638816, 5122922885438069578928905234650082410736
Offset: 0
Inequivalent representatives of the a(2) = 1 through a(4) = 13 graphical necklaces:
{{12}} {{12}{13}} {{12}{13}{14}}
{{12}{13}{23}} {{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
Cf.
A000031,
A000939,
A001187,
A006125,
A006129,
A008965,
A184271,
A192332,
A275527,
A323858,
A323859,
A323870,
A324461,
A324462,
A324463.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[csm[#]]<=1,#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
-
\\ B(n,d) is graphs on n*d points invariant under 1/d rotation.
B(n,d)={2^(n*(n-1)*d/2 + n*(d\2))}
D(n,d)={my(v=vector(n, i, B(i,d)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); sumdiv(n, e, eulerphi(d*e) * moebius(e) * u[n/e] * e^(n/e-1))}
a(n)={if(n<=1, n==0, sumdiv(n, d, D(n/d,d))/n)} \\ Andrew Howroyd, Jan 24 2023
Showing 1-10 of 15 results.
Comments