Original entry on oeis.org
1, 2, 4, 11, 28, 152, 726, 5268, 40438, 365944, 3628810, 39974466, 479001612, 6228256404, 87178339984, 1307706805928, 20922789888016, 355688409760972, 6402373705728018, 121645133931170028, 2432902008232456692
Offset: 0
-
[seq(A061860(j),j=1..40)]; with(numtheory); A061860 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s + phi(n/d)*(binomial(n,d))*(d!); od; RETURN(s/n); end;
-
a[n_] := DivisorSum[n, EulerPhi[n/#] Binomial[n, #] (#!)&]/n; Array[a, 25] (* Jean-François Alcover, Mar 06 2016 *)
A002995
Number of unlabeled planar trees (also called plane trees) with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 14, 34, 95, 280, 854, 2694, 8714, 28640, 95640, 323396, 1105335, 3813798, 13269146, 46509358, 164107650, 582538732, 2079165208, 7457847082, 26873059986, 97239032056, 353218528324, 1287658723550, 4709785569184
Offset: 0
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 14*x^7 + 34*x^8 + 95*x^9 + ...
a(7) = 14 = 11 + 3 because there are 11 trees with 7 nodes but three of them can be embedded in a plane in two ways. These three trees have degree sequences 4221111, 3321111, 3222111, where there are two trees with each degree sequence but in the first, the two nodes of degree two are adjacent, in the second, the two nodes of degree three are adjacent, and in the third, the node of degree three is adjacent to two nodes of degree two. - _Michael Somos_, Aug 19 2014
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 304.
- A. Errera, De quelques problèmes d'analysis situs, Comptes Rend. Congr. Nat. Sci. Bruxelles, (1930), 106-110.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.26).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..200
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 285 (4.1.26), 291 (4.1.48)
- CombOS - Combinatorial Object Server, Generate free plane trees
- R. Cori and M. Marcus, Counting non-isomorphic chord diagrams, Theor. Comp. Sci. 204 (1998) 55-75, Corollary 5.2.
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
- A. Errera, Reviews of two articles on Analysis Situs, from Fortschritte [Annotated scanned copy]
- D. Feldman, Counting plane trees, Unpublished manuscript, 1992. (Annotated scanned copy)
- Bernold Fiedler, Scalar polynomial vector fields in real and complex time, arXiv:2410.05043 [math.DS], 2024. See pp. 21, 50.
- Bernold Fiedler, Real-time blow-up and connection graphs of rational vector fields on the Riemann sphere, arXiv:2504.20503 [math.DS], 2025. See p. 23.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- G. Labelle, Sur la symétrie et l'asymétrie des structures combinatoires, Theor. Comput. Sci. 117, No. 1-2, 3-22 (1993).
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- Torsten Mütze, Proof of the middle levels conjecture, arXiv preprint arXiv:1404.4442 [math.CO], 2014.
- Torsten Mütze, A book proof of the middle levels theorem, arXiv:2306.13019 [math.CO], 2023.
- Torsten Mütze and Franziska Weber, Construction of 2-factors in the middle layer of the discrete cube, arXiv preprint arXiv:1111.2413 [math.CO], 2011.
- Torsten Mütze and F. Weber, Construction of 2-factors in the middle layer of the discrete cube, Journal of Combinatorial Theory, Series A, 119(8) (2012), 1832-1855.
- J. Sawada, Generating rooted and free plane trees, ACM Transactions on Algorithms, Vol. 2 No. 1 (2006), 1-13.
- Seunghyun Seo and Heesung Shin, Two involutions on vertices of ordered trees, FPSAC'02 (2002). (see p_n).
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233. See Table 1.
- D. W. Walkup, The number of plane trees, Mathematika, vol. 19, No. 2 (1972), 200-204.
- Index entries for sequences related to trees
-
with (powseries): with (combstruct): n := 27: Order := n+2: sys := {C = Cycle(B), B = Union(Z,Prod(B,B))}: G003239 := (convert(gfseries(sys,unlabeled,x) [C(x)], polynom)) / x: G000108 := convert(taylor((1-sqrt(1-4*x)) / (2*x),x),polynom): G002995 := 1 + G003239 + (eval(G000108,x=x^2) - G000108^2)/2: A002995 := 1,1,1,seq(coeff(G002995,x^i),i=1..n); # Ulrich Schimke, Apr 05 2002
with(combinat): with(numtheory): m := 2: for p from 2 to 28 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od : # Zerinvary Lajos, Dec 01 2006
-
a[0] = a[1] = 1; a[n_] := (1/(2*(n-1)))*Sum[ EulerPhi[(n-1)/d]*Binomial[2*d, d], {d, Divisors[n-1]}] - CatalanNumber[n-1]/2 + If[ EvenQ[n], CatalanNumber[n/2-1]/2, 0]; Table[ a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 07 2012, from formula *)
-
catalan(n) = binomial(2*n, n)/(n+1);
a(n) = if (n<2, 1, n--; sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/(2*n) - catalan(n)/2 + if ((n-1) % 2, 0, catalan((n-1)/2)/2)); \\ Michel Marcus, Jan 23 2016
Name corrected ("labeled" --> "unlabeled") by
David Callan, Aug 19 2014
A192332
For n >= 3, draw a regular n-sided polygon and its n(n-3)/2 diagonals, so there are n(n-1)/2 lines; a(n) is the number of ways to choose a subset of these lines (subsets differing by a rotation are regarded as identical). a(1)=1, a(2)=2 by convention.
Original entry on oeis.org
1, 2, 4, 22, 208, 5560, 299600, 33562696, 7635498336, 3518440564544, 3275345183542208, 6148914696963883712, 23248573454127484129024, 176848577040808821410837120, 2704321280486889389864215362560, 83076749736557243209409446411255936, 5124252113632955685095523500148980125696, 634332307869315502692705867068871886072665600
Offset: 1
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(4) = 22 graphical necklace edge-sets:
{} {} {} {}
{{12}} {{12}} {{12}}
{{12}{13}} {{13}}
{{12}{13}{23}} {{12}{13}}
{{12}{14}}
{{12}{24}}
{{12}{34}}
{{13}{24}}
{{12}{13}{14}}
{{12}{13}{23}}
{{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
(End)
Cf.
A000031,
A000939 (cycle necklaces),
A008965,
A059966,
A060223,
A061417,
A086675 (digraph version),
A184271,
A275527,
A323858,
A324461,
A324463,
A324464.
-
with(numtheory);
f:=proc(n) local t0, t1, d; t0:=0; t1:=divisors(n);
for d in t1 do
if d mod 2 = 0 then t0:=t0+phi(d)*2^(n^2/(2*d))
else t0:=t0+phi(d)*2^(n*(n-1)/(2*d)); fi; od; t0/n; end;
[seq(f(n), n=1..30)];
-
Table[ 1/n* Plus @@ Map[Function[d, EulerPhi[d]*2^((n*(n - Mod[d, 2])/2)/d)], Divisors[n]], {n, 1, 20}] (* Olivier Gérard, Aug 27 2011 *)
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,0,5}] (* Gus Wiseman, Mar 04 2019 *)
-
a(n) = sumdiv(n, d, if (d%2, eulerphi(d)*2^(n*(n-1)/(2*d)), eulerphi(d)*2^(n^2/(2*d))))/n; \\ Michel Marcus, Mar 08 2019
A006841
Permutation arrays of period n.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 28, 127, 686, 4975, 42529, 420948, 4622509, 55670332, 726738971, 10217376792, 153848448652, 2470073249960, 42120966152815, 760282326662191, 14481561464994821, 290289454462745374, 6108699653117045614
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. P. Street and R. Day, Sequential binary arrays II: Further results on the square grid, pp. 392-418 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- M. Engelhardt, Java program
- V. Meally, Letter to N. J. A. Sloane, Feb 1975
- E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143. (See Table 2, but note errors.)
- A. P. Street and R. Day, Sequential binary arrays II: Further results on the square grid, pp. 392-418 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982. (Annotated scanned copy)
- Venta Terauds, J. Sumner, Circular genome rearrangement models: applying representation theory to evolutionary distance calculations, arXiv preprint arXiv:1712.00858 [q-bio.PE], 2017.
Terms for n=1..8 from A. P. Street and R. Day; other terms computed by
Matthias Engelhardt. For n=9..12, he used a program which shifts, rotates and mirrors permutations. Terms for n=13..29 computed with a Java program implementing the formulas.
A060495
Each permutation in the list A060117 converted to Site Swap notation, with "zero throws" (fixed elements) replaced with n, the length of siteswap.
Original entry on oeis.org
1, 11, 312, 111, 231, 222, 4413, 1313, 4112, 1111, 2411, 2312, 4242, 1241, 4233, 1223, 2222, 2231, 3441, 3342, 3131, 3122, 3423, 3333, 55514, 14514, 51414, 11314, 25314, 24414, 55113, 14113, 51112, 11111, 25111, 24112, 52512, 12511, 52413
Offset: 0
Antti Karttunen, Mar 21 2001
-
Perm2SiteSwap1 := proc(p) local ip,n,i,a; n := nops(p); ip := convert(invperm(convert(p,'disjcyc')),'permlist',n); a := []; for i from 1 to n do a := [op(a),((ip[i]-i) mod n)]; od; RETURN(a); end;
SiteSwap1ToDec := proc(s) local i,z,n; n := nops(s); z := 0; for i from 1 to n do z := 10*z; if(0 = s[i]) then z := z+n; else z := z+s[i]; fi; od; RETURN(z); end;
A064640
Positions of non-crossing fixed-point-free involutions (encoded by A014486) in A055089, sorted to ascending order.
Original entry on oeis.org
0, 1, 7, 23, 127, 143, 415, 659, 719, 5167, 5183, 5455, 5699, 5759, 16687, 16703, 26815, 28495, 36899, 36959, 38579, 40031, 40319, 368047, 368063, 368335, 368579, 368639, 379567, 379583, 389695, 391375, 399779, 399839, 401459, 402911, 403199
Offset: 0
The first eight such permutations (after the identity) are in positions 1, 7, 23, 127, 143, 415, 659, 719 of A055089: 21, 2143, 4321, 214365, 432165, 216543, 632541, 654321 which written as disjoint cycles are (1 2), (1 2)(3 4), (1 4)(2 3), (1 2)(3 4)(5 6), (1 4)(2 3)(5 6), (1 2)(3 6)(4 5), (1 6)(2 3)(4 5), (1 6)(2 5)(3 4).
A086675
Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.
Original entry on oeis.org
1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
{}
{(1,1)}
{(1,2)}
{(1,1),(1,2)}
{(1,1),(2,1)}
{(1,1),(2,2)}
{(1,2),(2,1)}
{(1,1),(1,2),(2,1)}
{(1,1),(1,2),(2,2)}
{(1,1),(1,2),(2,1),(2,2)}
(End)
-
Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
(* second program *)
rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)
A324513
Number of aperiodic cycle necklaces with n vertices.
Original entry on oeis.org
1, 0, 0, 0, 2, 7, 51, 300, 2238, 18028, 164945, 1662067, 18423138, 222380433, 2905942904, 40864642560, 615376173176, 9880203467184, 168483518571789, 3041127459127222, 57926238289894992, 1161157775616335125, 24434798429947993043, 538583682037962702384
Offset: 1
Cf.
A000740,
A000939,
A001037 (binary Lyndon words),
A008965,
A059966 (Lyndon compositions),
A060223 (normal Lyndon words),
A061417,
A064852 (if cycle is oriented),
A086675,
A192332,
A275527,
A323866 (aperiodic toroidal arrays),
A323871.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&&UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
-
a(n)={if(n<3, n==0||n==1, (if(n%2, 0, -(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2))/2)} \\ Andrew Howroyd, Aug 19 2019
A324514
Number of aperiodic permutations of {1..n}.
Original entry on oeis.org
1, 0, 3, 16, 115, 660, 5033, 39936, 362718, 3624920, 39916789, 478953648, 6227020787, 87177645996, 1307674338105, 20922779566080, 355687428095983, 6402373519409856, 121645100408831981, 2432902004460734000, 51090942171698415483, 1124000727695858073380
Offset: 1
The a(4) = 16 aperiodic permutations:
(1243) (1324) (1342) (1423)
(2134) (2314) (2413) (2431)
(3124) (3142) (3241) (3421)
(4132) (4213) (4231) (4312)
-
Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]],{n,6}]
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019
A306669
Number of aperiodic permutation necklaces of weight n.
Original entry on oeis.org
1, 0, 1, 4, 23, 110, 719, 4992, 40302, 362492, 3628799, 39912804, 479001599, 6226974714, 87178289207, 1307673722880, 20922789887999, 355687417744992, 6402373705727999, 121645100223036700, 2432902008176115023, 51090942167993548790, 1124000727777607679999
Offset: 1
Cf.
A000031,
A000740,
A000939,
A001037,
A059966,
A060223,
A061417,
A086675,
A323861,
A323865,
A323866,
A323871.
-
Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]]/n,{n,6}]
-
a(n) = (1/n)*sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019
Showing 1-10 of 15 results.
Comments