Original entry on oeis.org
1, 2, 4, 10, 28, 130
Offset: 3
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A061417
Number of permutations up to cyclic rotations; permutation siteswap necklaces.
Original entry on oeis.org
1, 2, 4, 10, 28, 136, 726, 5100, 40362, 363288, 3628810, 39921044, 479001612, 6227066928, 87178295296, 1307675013928, 20922789888016, 355687438476444, 6402373705728018, 121645100594641896, 2432902008177690360, 51090942175425331320, 1124000727777607680022
Offset: 1
If I have a five-element permutation like 25431, in cycle notation (1 2 5)(3 4), I mark the numbers 1-5 clockwise onto a circle and draw directed edges from 1 to 2, from 2 to 5, from 5 to 1 and a double-way edge between 3 and 4. All the 5-element permutations that produce some rotation (discarding the labels of the nodes) of that chord diagram belong to the same equivalence class with 25431. The sequence gives the count of such equivalence classes.
A064636 (derangements-the same automorphism).
Cf.
A000031,
A000939,
A002995,
A008965,
A060223,
A064640,
A086675 (digraphical necklaces),
A179043,
A192332,
A275527 (path necklaces),
A323858,
A323859,
A323870,
A324513,
A324514 (aperiodic permutations).
-
List([1..10],n->Size( OrbitsDomain( CyclicGroup(IsPermGroup,n), SymmetricGroup( IsPermGroup,n),\^))); # Attila Egri-Nagy, Aug 15 2014
-
a061417 = sum . a047917_row -- Reinhard Zumkeller, Mar 19 2014
-
Algebraic formula: with(numtheory); SSRPCC := proc(n) local d,s; s := 0; for d in divisors(n) do s := s + phi(n/d)*((n/d)^d)*(d!); od; RETURN(s/n); end;
Empirically: with(group); SiteSwapRotationPermutationCycleCounts := proc(upto_n) local b,u,n,a,r; a := []; for n from 1 to upto_n do b := []; u := n!; for r from 0 to u-1 do b := [op(b),1+PermRank3R(SiteSwap2Perm1(rotateL(Perm2SiteSwap2(PermUnrank3Rfix(n,r)))))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
PermUnrank3Rfixaux := proc(n,r,p) local s; if(0 = n) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Rfixaux(n-1, r-(s*((n-1)!)), permul(p,[[n,n-s]]))); fi; end;
PermUnrank3Rfix := (n,r) -> convert(PermUnrank3Rfixaux(n,r,[]),'permlist',n);
SiteSwap2Perm1 := proc(s) local e,n,i,a; n := nops(s); a := []; for i from 1 to n do e := ((i+s[i]) mod n); if(0 = e) then e := n; fi; a := [op(a),e]; od; RETURN(convert(invperm(convert(a,'disjcyc')),'permlist',n)); end;
-
a[n_] := (1/n)*Sum[ EulerPhi[n/d]*(n/d)^d*d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 09 2012, from formula *)
Table[Length[Select[Permutations[Range[n]],#==First[Sort[NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]]]&]],{n,8}] (* Gus Wiseman, Mar 04 2019 *)
-
a(n) = (1/n)*sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Indranil Ghosh, Apr 10 2017
-
from sympy import divisors, factorial, totient
def a(n):
return sum(totient(n//d)*(n//d)**d*factorial(d) for d in divisors(n))//n
print([a(n) for n in range(1, 22)]) # Indranil Ghosh, Apr 10 2017
A053994
Nonattacking queens on a 2n+1 X 2n+1 toroidal board, solutions which differ only by rotation, reflection or torus shift count only once.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 11, 0, 97, 354, 0, 31381, 395551, 0, 90120677
Offset: 0
- A. P. Street and R. Day, Sequential binary arrays II: Further results on the square grid, pp. 392-418 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982 (for getting equivalence classes).
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639 (for finding the solutions).
A054500
Indicator sequence for classification of nonattacking queens on n X n toroidal board.
Original entry on oeis.org
1, 5, 7, 11, 13, 13, 13, 13, 17, 17, 17, 17, 17, 19, 19, 19, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 25, 29, 29, 29, 29, 29
Offset: 1
For a 19 X 19 toroidal board, you have three entries in the indicator sequence A054500; their count terms (A054502) give 354 = 4 + 132 + 218 inequivalent solutions; together with their multiplicity (A054501) they add up to 4*76 + 132*1444 + 218*2888 = 820496 solutions at all.
- A. P. Street and R. Day, Sequential binary arrays II: Further results on the square grid, pp. 392-418 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982 (for getting equivalence classes).
- Manuel Kauers and Christoph Koutschan, Guessing with Little Data, arXiv:2202.07966 [cs.SC], 2022.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math.Monthly, 101 (1994), 629-639 (for finding the solutions).
A003224
The number of superpositions of cycles of order n of the groups E_3 and D_n.
Original entry on oeis.org
1, 5, 24, 391, 9549, 401547, 22597671, 1646431048, 149640359575, 16597459048676, 2206178465445432, 346212403086248325, 63333787189956042080, 13359470726804093346852, 3218846593376516669825536, 878566295178157438213870011
Offset: 3
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A003225
The number of superpositions of cycles of order n of the groups S_3 and D_n.
Original entry on oeis.org
1, 3, 9, 89, 1705, 67750, 3771993, 274460137, 24940556932, 2766249007425, 367696475451179, 57702068070938071, 10555631209951650809, 2226578454651253107758, 536474432232188713033347, 146427715863075641229151764, 44945602048024898356307332914
Offset: 3
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A054501
Multiplicity sequence for classification of nonattacking queens on n X n toroidal board.
Original entry on oeis.org
1, 10, 28, 44, 26, 52, 338, 676, 34, 68, 578, 1156, 2312, 76, 1444, 2888, 92, 2116, 4232, 50, 100, 250, 500, 1000, 1250, 2500, 5000, 58, 116, 1682, 3364, 6728
Offset: 1
See comments and references for
A054500.
A054502
Counting sequence for classification of nonattacking queens on n X n toroidal board.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 5, 1, 3, 23, 30, 40, 4, 132, 218, 5, 1859, 29517, 1, 2, 9, 18, 51, 470, 7170, 387830, 1, 6, 1215, 121487, 89997968
Offset: 1
See comments and references for
A054500.
A062164
Number of ways of placing n nonattacking (normal) queens on n X n board; solutions congruent on the torus count only once.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 6, 20, 40, 191, 953, 4604, 24660, 158466, 1009395
Offset: 1
Updated link that is transferred from people.freenet.de/nQueens to www.nqueens.de
Matthias Engelhardt, Apr 21 2010
Showing 1-9 of 9 results.
Comments