cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A061417 Number of permutations up to cyclic rotations; permutation siteswap necklaces.

Original entry on oeis.org

1, 2, 4, 10, 28, 136, 726, 5100, 40362, 363288, 3628810, 39921044, 479001612, 6227066928, 87178295296, 1307675013928, 20922789888016, 355687438476444, 6402373705728018, 121645100594641896, 2432902008177690360, 51090942175425331320, 1124000727777607680022
Offset: 1

Views

Author

Antti Karttunen, May 02 2001

Keywords

Comments

If permutations are converted to (i,p(i)) permutation arrays, then this automorphism is obtained by their "SW-NE diagonal toroidal shifts" (see Matthias Engelhardt's Java program in A006841), while the Maple procedure below converts each permutation to a siteswap pattern (used in juggling), rotates it by one digit and converts the resulting new (or same) siteswap pattern back to a permutation.
When the subset of permutations listed by A064640 are subjected to the same automorphism one gets A002995.
The number of conjugacy classes of the symmetric group of degree n when conjugating only with the cyclic permutation group of degree n. - Attila Egri-Nagy, Aug 15 2014
Also the number of equivalence classes of permutations of {1...n} under the action of rotation of vertices in the cycle decomposition. The corresponding action on words applies m -> m + 1 for m < n and n -> 1, and rotates once to the right. For example, (24531) first becomes (35142) under the application of cyclic rotation, and then is rotated right to give (23514). - Gus Wiseman, Mar 04 2019

Examples

			If I have a five-element permutation like 25431, in cycle notation (1 2 5)(3 4), I mark the numbers 1-5 clockwise onto a circle and draw directed edges from 1 to 2, from 2 to 5, from 5 to 1 and a double-way edge between 3 and 4. All the 5-element permutations that produce some rotation (discarding the labels of the nodes) of that chord diagram belong to the same equivalence class with 25431. The sequence gives the count of such equivalence classes.
		

Crossrefs

Cf. A006841, A060495. For other Maple procedures, see A060501 (Perm2SiteSwap2), A057502 (CountCycles), A057509 (rotateL), A060125 (PermRank3R and permul).
A061417[p] = A061860[p] = (p-1)!+(p-1) for all prime p's.
A064636 (derangements-the same automorphism).
A061417[n] = A064649[n]/n.
Cf. A000031, A000939, A002995, A008965, A060223, A064640, A086675 (digraphical necklaces), A179043, A192332, A275527 (path necklaces), A323858, A323859, A323870, A324513, A324514 (aperiodic permutations).

Programs

  • GAP
    List([1..10],n->Size( OrbitsDomain( CyclicGroup(IsPermGroup,n), SymmetricGroup( IsPermGroup,n),\^))); # Attila Egri-Nagy, Aug 15 2014
    
  • Haskell
    a061417 = sum . a047917_row  -- Reinhard Zumkeller, Mar 19 2014
    
  • Maple
    Algebraic formula: with(numtheory); SSRPCC := proc(n) local d,s; s := 0; for d in divisors(n) do s := s + phi(n/d)*((n/d)^d)*(d!); od; RETURN(s/n); end;
    Empirically: with(group); SiteSwapRotationPermutationCycleCounts := proc(upto_n) local b,u,n,a,r; a := []; for n from 1 to upto_n do b := []; u := n!; for r from 0 to u-1 do b := [op(b),1+PermRank3R(SiteSwap2Perm1(rotateL(Perm2SiteSwap2(PermUnrank3Rfix(n,r)))))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
    PermUnrank3Rfixaux := proc(n,r,p) local s; if(0 = n) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Rfixaux(n-1, r-(s*((n-1)!)), permul(p,[[n,n-s]]))); fi; end;
    PermUnrank3Rfix := (n,r) -> convert(PermUnrank3Rfixaux(n,r,[]),'permlist',n);
    SiteSwap2Perm1 := proc(s) local e,n,i,a; n := nops(s); a := []; for i from 1 to n do e := ((i+s[i]) mod n); if(0 = e) then e := n; fi; a := [op(a),e]; od; RETURN(convert(invperm(convert(a,'disjcyc')),'permlist',n)); end;
  • Mathematica
    a[n_] := (1/n)*Sum[ EulerPhi[n/d]*(n/d)^d*d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 09 2012, from formula *)
    Table[Length[Select[Permutations[Range[n]],#==First[Sort[NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]]]&]],{n,8}] (* Gus Wiseman, Mar 04 2019 *)
  • PARI
    a(n) = (1/n)*sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import divisors, factorial, totient
    def a(n):
        return sum(totient(n//d)*(n//d)**d*factorial(d) for d in divisors(n))//n
    print([a(n) for n in range(1, 22)]) # Indranil Ghosh, Apr 10 2017

Formula

a(n) = (1/n)*Sum_{d|n} phi(n/d)*((n/d)^d)*(d!).

A086675 Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.

Original entry on oeis.org

1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003

Keywords

Comments

Also the number of digraphical necklaces with n vertices. A digraphical necklace is defined to be a directed graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of directed graphs under rotation of the vertices. These are a kind of partially labeled digraphs. - Gus Wiseman, Mar 04 2019

Examples

			From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
  {}
  {(1,1)}
  {(1,2)}
  {(1,1),(1,2)}
  {(1,1),(2,1)}
  {(1,1),(2,2)}
  {(1,2),(2,1)}
  {(1,1),(1,2),(2,1)}
  {(1,1),(1,2),(2,2)}
  {(1,1),(1,2),(2,1),(2,2)}
(End)
		

Crossrefs

Cf. A000031 (binary necklaces), A000939 (cycle necklaces), A008965, A060690, A061417 (permutation necklaces), A184271, A192332 (graphical necklaces), A275527 (path necklaces), A323858 (toroidal necklaces), A323870.

Programs

  • Mathematica
    Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
    (* second program *)
    rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
    Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)

Formula

a(n) = (1/n)*Sum_{ d divides n } phi(d)*2^(n^2/d) for n > 0, a(0) = 1.

Extensions

More terms from Wouter Meeussen, Jul 29 2003
a(0)=1 prepended by Gus Wiseman, Mar 04 2019

A324514 Number of aperiodic permutations of {1..n}.

Original entry on oeis.org

1, 0, 3, 16, 115, 660, 5033, 39936, 362718, 3624920, 39916789, 478953648, 6227020787, 87177645996, 1307674338105, 20922779566080, 355687428095983, 6402373519409856, 121645100408831981, 2432902004460734000, 51090942171698415483, 1124000727695858073380
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

A permutation is defined to be aperiodic if every cyclic rotation of {1..n} acts on the cycle decomposition to produce a different digraph.

Examples

			The a(4) = 16 aperiodic permutations:
  (1243) (1324) (1342) (1423)
  (2134) (2314) (2413) (2431)
  (3124) (3142) (3241) (3421)
  (4132) (4213) (4231) (4312)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]],{n,6}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = A306669(n) * n.
a(n) = Sum_{d|n} mu(n/d)*(n/d)^d*d!. - Andrew Howroyd, Aug 19 2019

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019

A306669 Number of aperiodic permutation necklaces of weight n.

Original entry on oeis.org

1, 0, 1, 4, 23, 110, 719, 4992, 40302, 362492, 3628799, 39912804, 479001599, 6226974714, 87178289207, 1307673722880, 20922789887999, 355687417744992, 6402373705727999, 121645100223036700, 2432902008176115023, 51090942167993548790, 1124000727777607679999
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

A permutation is aperiodic if every rotation of {1...n} acts on the vertices of the cycle decomposition to produce a different digraph. A permutation necklace is an equivalence class of permutations under the action of rotation of vertices in the cycle decomposition. The corresponding action on words applies m -> m + 1 for m < n and n -> 1, and rotates once to the right. For example, (24531) first becomes (35142) under the application of cyclic rotation, and then is rotated right to give (23514).

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]]/n,{n,6}]
  • PARI
    a(n) = (1/n)*sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = A324514(n)/n.
a(n) = (1/n)*Sum_{d|n} mu(n/d)*(n/d)^d*d!. - Andrew Howroyd, Aug 19 2019

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019

A064852 Number of orbits in A002619 consisting of n permutations.

Original entry on oeis.org

1, 0, 0, 1, 4, 18, 102, 624, 4476, 36248, 329890, 3326054, 36846276, 444783906, 5811885808, 81729607680, 1230752346352, 19760412095328, 336967037143578, 6082255011151724, 115852476579789984, 2322315553090615850, 48869596859895986086, 1077167364116800207968
Offset: 1

Views

Author

Michael Steyer (m.steyer(AT)osram.de), Oct 06 2001

Keywords

Comments

Also, the number of aperiodic oriented cycles on n nodes up to rotation of the nodes. See A324513 for illustrations of aperiodic undirected cycles. - Andrew Howroyd, Aug 16 2019

Examples

			n=6: The orbit {(124635)(235146)(346251)(451362)(562413)(613524)} consists of 6 single permutations.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/k] * EulerPhi[n/k] * (n/k)^k * (k!/n^2), {k, Divisors[n]}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jun 26 2012, after PARI *)
  • PARI
    for(n=1,23,print(sumdiv(n,d,moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2)))
    
  • PARI
    { for (n=1, 100, a=sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2); write("b064852.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009

Formula

a(n) = Sum_{k|n} mu(n/k)*phi(n/k)*(n/k)^k*k!/n^2 = A047918(n, n)/n^2.

Extensions

Corrected and extended by Jason Earls and Vladeta Jovovic, Oct 08 2001

A324512 Number of aperiodic n-gons.

Original entry on oeis.org

1, 0, 0, 0, 10, 42, 357, 2400, 20142, 180280, 1814395, 19944804, 239500794, 3113326062, 43589143560, 653834280960, 10461394943992, 177843662409312, 3201186852863991, 60822549182544440, 1216451004087794832, 25545471063559372750, 562000363888803839989
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

We define an n-gon to be aperiodic if all n rotations of its vertex set act on the edge set to give distinct n-gons. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).

Examples

			The a(5) = 10 aperiodic polygon edge sets:
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
  • PARI
    a(n)={if(n<3, n==1, (if(n%2, 0, -n*(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n))/2)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = n * A324513(n).

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019

A306715 Number of graphical necklaces with n vertices and distinct rotations.

Original entry on oeis.org

1, 0, 2, 12, 204, 5372, 299592, 33546240, 7635496960, 3518433853392, 3275345183542176, 6148914685509544960, 23248573454127484128960, 176848577040728399988915648, 2704321280486889389857342715776, 83076749736557240903566436660674560
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2019

Keywords

Comments

A simple graph with n vertices has distinct rotations if all n rotations of its vertex set act on the edge set to give distinct graphs. A graphical necklace is a simple graph that is minimal among all n rotations of the vertices.

Crossrefs

Cf. A000088, A001037, A006125, A059966, A060223, A086675, A192332 (graphical necklaces), A306669, A323861, A323865, A323866, A323871, A324461 (distinct rotations), A324513.

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],With[{rots=Table[Nest[rotgra[#,n]&,#,j],{j,n}]},UnsameQ@@rots&&#==First[Sort[rots]]]&]],{n,5}]
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, moebius(d)*2^(n*(n/d-1)/2 + n*(d\2)/d))/n)} \\ Andrew Howroyd, Aug 15 2019

Formula

a(n > 0) = A324461(n)/n.
a(n) = (1/n)*Sum_{d|n} mu(d)*2^(n*(n/d-1)/2 + n*floor(d/2)/d) for n > 0. - Andrew Howroyd, Aug 15 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 15 2019
Showing 1-7 of 7 results.