Michael Steyer has authored 6 sequences.
A274332
Team size n for which there exists a balanced tournament for 2n+1 players so that in 2n+1 matches each player plays exactly n-1 times with and n times against each other player.
Original entry on oeis.org
1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33
Offset: 0
n=5:
Match 1: 1,2,3,5,8 versus 4,7,9,10,11
Match 2: 2,3,4,6,9 versus 5,8,10,11,1
Matches 3..11: further cyclic permutations
A181344
Number of n X n matrices over {0,1} with rows and columns summing to 3, rows and columns sorted (>=) by value.
Original entry on oeis.org
0, 0, 1, 1, 5, 25, 161, 1112, 8787, 76156, 728699, 7609065, 86162795, 1050755884, 13728407061, 191309852944
Offset: 1
Michael Steyer (m.steyer(AT)osram.de), Oct 14 2010
n=4: {1110,1101,1011,0111} is the only matrix where each row (column) - read as a binary number - is equal to or larger than the previous one, so a(4)=1.
A181345
Number of n X n matrices over {0,1} with rows and columns summing to 3, rows and columns sorted (>) by value.
Original entry on oeis.org
0, 0, 0, 1, 2, 12, 87, 662, 5611, 51141, 509277, 5504398, 64122940, 800741192, 10673478573, 151323048909
Offset: 1
Michael Steyer (m.steyer(AT)osram.de), Oct 18 2010
n=4: {1110,1101,1011,0111} is the only matrix where each row (column) - read as a binary number - is larger than the previous one, so a(4)=1.
A079815
Number of equivalent classes of n X n 0-1 matrices with 3 1's in each row and column.
Original entry on oeis.org
0, 0, 1, 1, 2, 7, 16, 71
Offset: 1
Michael Steyer (m.steyer(AT)osram.de), Feb 20 2003
n=4: every matrix with 3 1's in each row and column can be transformed by permutation of rows (or columns) into {1110,1101,1011,0111}, therefore a(4)=1.
A064852
Number of orbits in A002619 consisting of n permutations.
Original entry on oeis.org
1, 0, 0, 1, 4, 18, 102, 624, 4476, 36248, 329890, 3326054, 36846276, 444783906, 5811885808, 81729607680, 1230752346352, 19760412095328, 336967037143578, 6082255011151724, 115852476579789984, 2322315553090615850, 48869596859895986086, 1077167364116800207968
Offset: 1
Michael Steyer (m.steyer(AT)osram.de), Oct 06 2001
n=6: The orbit {(124635)(235146)(346251)(451362)(562413)(613524)} consists of 6 single permutations.
-
a[n_] := Sum[ MoebiusMu[n/k] * EulerPhi[n/k] * (n/k)^k * (k!/n^2), {k, Divisors[n]}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jun 26 2012, after PARI *)
-
for(n=1,23,print(sumdiv(n,d,moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2)))
-
{ for (n=1, 100, a=sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2); write("b064852.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
A058844
Number of ways of placing n labeled balls into 4 indistinguishable boxes with at least 2 balls in each box.
Original entry on oeis.org
105, 1260, 9450, 56980, 302995, 1487200, 6914908, 30950920, 134779645, 575156036, 2417578670, 10046531276, 41388056231, 169371383384, 689568172832, 2796362035104, 11305163394129, 45595968007260, 183557935474290, 737897437077060, 2963015460969915
Offset: 8
a(8) = 8!/(2!*2!*2!*2!*4!) = 105.
-
[(4^n-3^(n-1)*(4*n+12)+2^(n-1)*(12+9*n+3*n^2)-4*n^3-8*n-4)/24 : n in [8..25]]; // Wesley Ivan Hurt, Oct 28 2014
-
A058844:=n->(4^n-3^(n-1)*(4*n+12)+2^(n-1)*(12+9*n+3*n^2)-4*n^3-8*n-4)/24: seq(A058844(n), n=8..25); # Wesley Ivan Hurt, Oct 28 2014
-
Table[(4^n - 3^(n - 1) (4 n + 12) + 2^(n - 1) (12 + 9 n + 3 n^2) - 4 n^3 - 8 n - 4)/24, {n, 8, 25}] (* Wesley Ivan Hurt, Oct 28 2014 *)
offset = 8; terms = 21; egf = (Exp[x]-1-x)^4/4!; Drop[CoefficientList[egf + O[x]^(terms+offset), x]*Range[0, terms+offset-1]!, offset] (* Jean-François Alcover, May 07 2017 *)
-
a(n)=(4^n - 3^(n-1)*(4*n+12) + 2^(n-1)*(12+9*n+3*n^2) - 4*n^3 - 8*n - 4)/24 \\ Charles R Greathouse IV, Oct 28 2014
Comments