A277692 Mendelsohn-Rodney sequence: number of court balanced tournament designs that are available for a given set of teams n.
0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 4, 1, 5, 3, 2, 3, 6, 1, 2, 3, 6, 1, 4, 1, 4, 5, 2, 1, 8, 2, 3, 3, 4, 1, 4, 3, 6, 3, 2, 1, 8, 1, 2, 5, 6, 3, 4, 1, 4, 3, 4, 1, 9, 1, 2, 5, 4, 3, 4, 1, 8, 4, 2, 1, 8, 3, 2, 3, 6, 1, 6, 3, 4, 3, 2, 3, 10, 1, 3, 5, 6, 1, 4, 1, 6, 7, 2, 1
Offset: 1
Keywords
Examples
For n = 9, c = 1, 2, 4 satisfy the conditions given in the formula, so a(n) = 3.
References
- Derek Holton, A First Step to Mathematical Olympiad Problems, Vol. 1, Mathematical Olympiad Series, World Scientific, 2010, & 8.3. PHIL 1 pp. 250-252 and & 8.11 Solutions pp 261-265.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- The IMO Compendium, Problem 1, 30th IMO 1989.
- E. Mendelsohn and P. Rodney, The existence of court balanced tournament designs, Discrete Mathematics, 133 (1994), 207-216.
- Index to sequences related to Olympiads.
Programs
-
Mathematica
{0}~Join~Table[Function[k, Count[Range@ k, c_ /; And[Divisible[n - 1, c], Divisible[Binomial[n, 2], c]] ]]@ Floor[n/2], {n, 2, 108}] (* Michael De Vlieger, Oct 27 2016 *)
-
PARI
a(n) = #select(x->(!(binomial(n, 2) % x)) && !((n-1) % x), vector(n\2, k, k)); \\ Michel Marcus, Oct 27 2016
-
Python
import scipy.stats teams = 151 courtcount = [] i= 1 for j in range(1,teams): t = 0 for i in range(1,int(j/2) + 1): if j>1 and ((j*(j-1))/2)%i == 0 and (j-1)%i == 0: t += 1 if j > 1: courtcount.append(t) a = 0 for p in courtcount: if p == 1: a+=1 print(courtcount)
-
Python
from _future_ import division from sympy import divisors def A277692(n): return sum(1 for c in divisors(n-1) if c < n-1 and not (n*(n-1)//2) % c) if n != 2 else 1 # Chai Wah Wu, Oct 29 2016
Formula
a(n) is the number of values of c that satisfy the following conditions: C(n,2) mod c = 0, and (n-1) mod c = 0, and 1 <= c <= floor(n/2).
a(2n) = A000005(2n-1)-1 for n > 1. - Chai Wah Wu, Oct 29 2016
a(1) = 0; a(2n+1) = A183063(2n) for n > 0 - Bernard Schott, Sep 22 2022
Comments