A113263 a(n) is the number of ways the set {1^3, 2^3, ..., n^3} can be partitioned into two sets of equal sums.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 62, 0, 0, 268, 356, 0, 0, 2287, 1130, 0, 0, 5317, 36879, 0, 0, 203016, 319415, 0, 0, 2124580, 1631750, 0, 0, 10953868, 41280525, 0, 0, 242899218, 472958485, 0, 0, 2984270739, 3419746788, 0, 0
Offset: 1
Keywords
Links
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..130 (first 100 terms from Alois P. Heinz)
Programs
-
Maple
A113263:=proc(n) local i,p,t; t:= NULL; p:=1; for i to n do p:=p*(x^(i^3)+x^(-i^3)); t:=t,coeff(p,x,0)/2; od; t; end;
-
Mathematica
p = 1; t = {}; Do[p = Expand[p(x^(n^3) + x^(-n^3))]; AppendTo[t, Select[ p, NumberQ[ # ] &]/2], {n, 56}]; t (* Robert G. Wilson v *)
Formula
a(n) is half the coefficient of x^0 in product(x^(k^3)+x^(k^-3), k=1..n).
a(n) = [x^(n^3)] Product_{k=1..n-1} (x^(k^3) + 1/x^(k^3)). - Ilya Gutkovskiy, Feb 01 2024
Extensions
More terms from Robert G. Wilson v and Tony Noe, Oct 27 2005
Comments