cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113263 a(n) is the number of ways the set {1^3, 2^3, ..., n^3} can be partitioned into two sets of equal sums.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 62, 0, 0, 268, 356, 0, 0, 2287, 1130, 0, 0, 5317, 36879, 0, 0, 203016, 319415, 0, 0, 2124580, 1631750, 0, 0, 10953868, 41280525, 0, 0, 242899218, 472958485, 0, 0, 2984270739, 3419746788, 0, 0
Offset: 1

Views

Author

Floor van Lamoen, Oct 21 2005

Keywords

Comments

a(n)=0 when n == 1 or 2 mod 4.

Crossrefs

Programs

  • Maple
    A113263:=proc(n) local i,p,t; t:= NULL; p:=1; for i to n do p:=p*(x^(i^3)+x^(-i^3)); t:=t,coeff(p,x,0)/2; od; t; end;
  • Mathematica
    p = 1; t = {}; Do[p = Expand[p(x^(n^3) + x^(-n^3))]; AppendTo[t, Select[ p, NumberQ[ # ] &]/2], {n, 56}]; t (* Robert G. Wilson v *)

Formula

a(n) is half the coefficient of x^0 in product(x^(k^3)+x^(k^-3), k=1..n).
a(n) = [x^(n^3)] Product_{k=1..n-1} (x^(k^3) + 1/x^(k^3)). - Ilya Gutkovskiy, Feb 01 2024

Extensions

More terms from Robert G. Wilson v and Tony Noe, Oct 27 2005