A113270 a(n) = sqrt(Product_{k=1..2^n} (Product_{i=1..n} p_i^e_{k,i} + Product_{i=1..n} p_i^(1-e_{k,i}))) * Sum_{i=1..n} ((1/p_i)*Product_{k=1..n} p_k) where p_i is the i-th prime and e_{k,i} is a vector of length n that runs through all combinations of {0,1}.
3, 175, 2336191, 26093310174834487, 1077450280423046944912713622717154955599567
Offset: 1
Keywords
Examples
a(3) = ((1 + p_1*p_2*p_3)*(p_3 + p_1*p_2)*(p_2 + p_1*p_3)*(p_2*p_3 + p_1)*(p_1 + p_2*p_3)*(p_1*p_3 + p_2)*(p_1*p_2 + p_3)*(p_1*p_2*p_3 + 1))^(1/2) * (p_2*p_3 + p_1*p_3 + p_1*p_2) = (1 + p_1*p_2*p_3)*(p_3 + p_1*p_2)*(p_2 + p_1*p_3)*(p_2*p_3 + p_1) * (p_2*p_3 + p_1*p_3 + p_1*p_2) = 31*11*13*17*31.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..8
Crossrefs
Cf. A111392.
Programs
-
Mathematica
a[n_] := Module[{e = Tuples[{0, 1}, n]}, (Product[Product[Prime[i]^e[[j]][[i]], {i, 1, n}] + Product[Prime[i]^(1 - e[[j]][[i]]), {i, 1, n}], {j, 1, 2^n}])^(1/2) ]*Sum[1/Prime[i], {i, 1, n}]* Product[Prime[i], {i, 1, n}]; Array[a, 6] (* Amiram Eldar, Nov 23 2018 *)
Extensions
Name clarified by and a(5) from Amiram Eldar, Nov 23 2018
Comments