A113279 Triangle T(n,k) of coefficients of r_1^n+r_2^n in terms of p and q, where r_1,r_2 are the roots of x^2+px+q=0.
2, -1, 1, -2, -1, 3, 1, -4, 2, -1, 5, -5, 1, -6, 9, -2, -1, 7, -14, 7, 1, -8, 20, -16, 2, -1, 9, -27, 30, -9, 1, -10, 35, -50, 25, -2, -1, 11, -44, 77, -55, 11, 1, -12, 54, -112, 105, -36, 2, -1, 13, -65, 156, -182, 91, -13, 1, -14, 77, -210, 294, -196, 49, -2, -1, 15, -90, 275, -450, 378, -140, 15
Offset: 0
Examples
x_1^5+x_2^5 = -p^5 + 5p^3q - 5pq^2, so row 5 reads -1, 5, -5.
References
- M. Herkenhoff Konersmann, Sprokkel XXXI: x_1^n+x_2^n, Nieuw Tijdschr. Wisk, 42 (1954-55) 180.
Links
- T. Copeland, Addendum to Elliptic Lie Triad
- Wikipedia, Newton's identities.
Formula
T(n, k) = (-1)^(n+k)*A034807(n, k).
O.g.f.: 2-(2xt+1)xt/(t+xt+(xt)^2) = (2+x)/(1+x+x^2/t). - Tom Copeland, Nov 07 2015
Comments