A113288 Matrix inverse of triangle A113287.
1, -2, 1, 3, 0, 1, -8, -4, -4, 1, 15, 10, 10, 0, 1, -36, -30, -36, -12, -6, 1, 77, 70, 91, 42, 21, 0, 1, -192, -184, -256, -152, -96, -24, -8, 1, 459, 450, 648, 432, 306, 108, 36, 0, 1, -1220, -1210, -1780, -1280, -1000, -460, -200, -40, -10, 1, 3201, 3190, 4741, 3542, 2926, 1540, 770, 220, 55, 0, 1
Offset: 0
Examples
Triangle begins: .1; .-2,1; .3,0,1; .-8,-4,-4,1; .15,10,10,0,1; .-36,-30,-36,-12,-6,1; .77,70,91,42,21,0,1; .-192,-184,-256,-152,-96,-24,-8,1; .459,450,648,432,306,108,36,0,1; .-1220,-1210,-1780,-1280,-1000,-460,-200,-40,-10,1; .3201,3190,4741,3542,2926,1540,770,220,55,0,1; ...
Programs
-
PARI
{T(n,k)=local(x=X+O(X^(n+2)),y=Y+O(Y^(n+2)),M=matrix(n+1,n+1,r,c, polcoeff(polcoeff(1/(1-x*y)+r*x/((1-x*y)*(1+x+x*y)),r-1,X),c-1,Y))); if(n