cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113309 a(n) = the number of finite sequences of positive integers {b(k)} where (product b(k)) * (sum b(k)) = n. Different orderings of the same sequence {b(k)} are not counted separately.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 3, 2, 1, 9, 2, 3, 2, 4, 1, 6, 2, 7, 2, 2, 1, 8, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 2, 5, 1, 9, 4, 2, 1, 10, 2, 2, 2, 7, 1, 9, 2, 4, 2, 2, 2, 13, 1, 3, 4, 7, 1, 5, 1, 7
Offset: 1

Views

Author

Leroy Quet, Oct 25 2005

Keywords

Comments

Sequence's terms calculated by "Max".
First occurrence: 1, 4, 12, 16, 24, 54, 36, 60, 48, 84, 72, 108, 96, ..., . - Robert G. Wilson v, May 03 2006

Examples

			6 = (1*1*1*1*1*1) * (1+1+1+1+1+1) = (1*2) * (1+2). So a(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    t = Table[1, {104}]; Do[k = 1; lmt = PartitionsP[n]; p = IntegerPartitions[n]; While[k < lmt, a = Plus @@ p[[k]]*Times @@ p[[k]]; If[a < 105, t[[a]]++ ]; k++ ], {n, 52}]; t (* Robert G. Wilson v, May 03 2006 *)
  • Scheme
    (define (A113309 n) (let ((z (list 0))) (let loop ((k n)) (cond ((zero? k) (car z)) ((not (zero? (modulo n k))) (loop (- k 1))) (else (begin (fold_over_partitions_with_uplim_cut k 1 * (lambda (partprod) (if (= n (* k partprod)) (set-car! z (+ 1 (car z))))) (/ n k)) (loop (- k 1))))))))
    (define (fold_over_partitions_with_uplim_cut m initval addpartfun colfun uplim) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) ((> partition uplim) #f) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i)))))))) ;; This function is a modification of fold_over_partitions_of given in A000793.
    ;; Antti Karttunen, Nov 03 2017

Formula

a(n) = 1 iff n = 1 or n is a prime. a(n) = 2 if n is a semiprime. - Robert G. Wilson v, May 03 2006
a(n) = Sum_{d|n} {number of partitions of d where product of parts = n/d}. - Antti Karttunen, Nov 03 2017

Extensions

More terms from Robert G. Wilson v, May 03 2006