A113310 Riordan array ((1+x)/(1-x),x/(1+x)).
1, 2, 1, 2, 1, 1, 2, 1, 0, 1, 2, 1, 1, -1, 1, 2, 1, 0, 2, -2, 1, 2, 1, 1, -2, 4, -3, 1, 2, 1, 0, 3, -6, 7, -4, 1, 2, 1, 1, -3, 9, -13, 11, -5, 1, 2, 1, 0, 4, -12, 22, -24, 16, -6, 1, 2, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 2, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 2, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1
Offset: 0
Examples
Triangle begins 1; 2,1; 2,1,1; 2,1,0,1; 2,1,1,-1,1; 2,1,0,2,-2,1;
References
- F.J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 2003, p. 321.
Programs
-
Mathematica
T[n_, k_] := Sum[(-1)^(n-j) Binomial[n, j] (2^(j-k+1) - 1), {j, k, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2017 *)
Formula
T(n, k) = Sum_{j=0..n-k} (-1)^j*C(j+k-2, j).
T(n, k) = Sum_{j=0..n-k} (-1)^(n-k-j)*C(n-j-2, n-j-k).
T(n, k) = Sum_{j=k..n} (-1)^(n-j)*C(n, j)*(2^(j-k+1)-1).
Comments