cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113311 Expansion of (1+x)^2/(1-x).

Original entry on oeis.org

1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Paul Barry, Oct 25 2005

Keywords

Comments

Row sums of A113310.
Let m=3. We observe that a(n)=Sum_{k=0..floor(n/2)} C(m,n-2*k). Then there is a link with A040000 and A115291: it is the same formula with respectively m=2 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
Also continued fraction expansion of (3+sqrt(5))/4. - Bruno Berselli, Sep 23 2011
Also decimal expansion of 121/900. - Vincenzo Librandi, Sep 24 2011

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} Sum_{i=0..n-k} (-1)^i*C(i+k-2, i).
E.g.f.: 4*exp(x) - x - 3. - Elmo R. Oliveira, Aug 08 2024

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A113312 Expansion of (1+x)^2/(1-2x^2+x^3).

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 5, 2, 7, -1, 12, -9, 25, -30, 59, -85, 148, -229, 381, -606, 991, -1593, 2588, -4177, 6769, -10942, 17715, -28653, 46372, -75021, 121397, -196414, 317815, -514225, 832044, -1346265, 2178313, -3524574, 5702891, -9227461, 14930356, -24157813, 39088173, -63245982, 102334159
Offset: 0

Views

Author

Paul Barry, Oct 25 2005

Keywords

Comments

Diagonal sums of A113310.

Programs

  • Mathematica
    LinearRecurrence[{0,2,-1},{1,2,3},50] (* Harvey P. Dale, May 19 2014 *)

Formula

a(n)=2a(n-2)-a(n-3); a(n)=sum{k=0..floor(n/2), sum{i=0..n-2k, (-1)^i*C(i+k-2, i)}}.

A113313 Riordan array (1-2x,x/(1-x)).

Original entry on oeis.org

1, -2, 1, 0, -1, 1, 0, -1, 0, 1, 0, -1, -1, 1, 1, 0, -1, -2, 0, 2, 1, 0, -1, -3, -2, 2, 3, 1, 0, -1, -4, -5, 0, 5, 4, 1, 0, -1, -5, -9, -5, 5, 9, 5, 1, 0, -1, -6, -14, -14, 0, 14, 14, 6, 1, 0, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, 0, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, 0, -1, -9, -35
Offset: 0

Views

Author

Paul Barry, Oct 25 2005

Keywords

Comments

Row sums are (1,-1,0,0,0,...) = 2*C(0,n) - C(1,n).
Diagonal sums are -2*0^n - F(n-4) with g.f. (1 - 3x + 2x^2) / (1 - x - x^2).
Inverse of A113310.

Examples

			The triangle T(n, k) begins:
n\k 0  1  2   3   4   5  6  7  8 9 10 ...
0:  1
1: -2  1
2:  0 -1  1
3:  0 -1  0   1
4:  0 -1 -1   1   1
5:  0 -1 -2   0   2   1
6:  0 -1 -3  -2   2   3  1
7:  0 -1 -4  -5   0   5  4  1
8:  0 -1 -5  -9  -5   5  9  5  1
9:  0 -1 -6 -14 -14   0 14 14  6 1
10: 0 -1 -7 -20 -28 -14 14 28 20 7  1
... Reformatted. - _Wolfdieter Lang_, Jan 06 2015
		

Crossrefs

Cf. A113310.

Formula

T(n, k) = C(n-1, n-k) - 2*C(n-2, n-k-1).
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-x + x^3/3!) = -x - 2*x^2/2! - 2*x^3/3! + 5*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
Showing 1-3 of 3 results.