cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143017 Number of {2-1-3, 2'^e-31}-avoiding permutations of size n (see definition in the Elizalde paper).

Original entry on oeis.org

1, 2, 4, 9, 22, 56, 147, 396, 1088, 3036, 8582, 24524, 70727, 205594, 601756, 1771937, 5245544, 15602496, 46606356, 139753120, 420520000, 1269361000, 3842722454, 11663928644, 35490451807, 108232655126, 330760284892
Offset: 1

Views

Author

Emeric Deutsch, Jul 17 2008

Keywords

Comments

a(n) is the number of Dyck paths of semilength n for which all non-terminal descents are of odd length. For example, a(3) = 4 counts all 5 Dyck paths of semilength 3 except UUDDUD and a(4) = 9 counts, among others, UUUDUDDD and UUDUDUDD but not UUDDUUDD. - David Callan, Nov 13 2021

Programs

  • Maple
    a:=proc(n) options operator, arrow: (sum(2*binomial(n,2*k)*binomial(n-k,k-1)+n*binomial(n,2*k+1)*binomial(n-k,k)/(n-k),k=0..floor((1/2)*n)))/n end proc: seq(a(n),n=1..27);
  • Mathematica
    Table[1/n*Sum[2*Binomial[n,2k]*Binomial[n-k,k-1]+ n*Binomial[n,2k+1] *Binomial[n-k,k]/(n-k),{k,0,n-1}],{n,1,20}] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

a(n) = (1/n)*Sum_{k=0..floor(n/2)} 2*binomial(n,2k)*binomial(n-k,k-1) + n*binomial(n,2k+1)*binomial(n-k,k)/(n-k).
G.f. G(x) satisfies x*G^3 + (4x-2)*G^2 + (4x-1)*G + x = 0.
Conjecture: -8*n*(n+1)*a(n) + 4*n*(2*n+5)*a(n-1) + 4*n*(n+7)*a(n-2) + 2*(70*n^2-395*n+564)*a(n-3) + 2*(25*n^2-143*n+222)*a(n-4) + 4*(49*n-228)*(n-5)*a(n-5) - 45*(n-5)*(n-6)*a(n-6) = 0. - R. J. Mathar, Mar 14 2014
Recurrence (of order 4): 4*n*(n+1)*(91*n^2 - 217*n + 102)*a(n) = 6*n*(182*n^3 - 525*n^2 + 365*n - 78)*a(n-1) - 4*(91*n^4 - 399*n^3 - 136*n^2 + 990*n - 450)*a(n-2) + 12*(n-3)*(182*n^3 - 525*n^2 + 92*n + 140)*a(n-3) - 5*(n-4)*(n-3)*(91*n^2 - 35*n - 24)*a(n-4). - Vaclav Kotesovec, Mar 20 2014
Showing 1-1 of 1 results.