cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A113350 Triangle Q, read by rows, such that Q^2 transforms column k of Q^2 into column k+1 of Q^2, so that column k of Q^2 equals column 0 of Q^(2*k+2), where Q^2 denotes the matrix square of Q.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 19, 22, 6, 1, 113, 166, 51, 8, 1, 966, 1671, 561, 92, 10, 1, 10958, 21510, 7726, 1324, 145, 12, 1, 156700, 341463, 129406, 23010, 2575, 210, 14, 1, 2727794, 6496923, 2572892, 471724, 53935, 4434, 287, 16, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Examples

			Triangle Q begins:
1;
2,1;
5,4,1;
19,22,6,1;
113,166,51,8,1;
966,1671,561,92,10,1;
10958,21510,7726,1324,145,12,1;
156700,341463,129406,23010,2575,210,14,1;
2727794,6496923,2572892,471724,53935,4434,287,16,1;
56306696,144856710,59525136,11198006,1305070,108593,7021,376,18,1;
Matrix square Q^2 begins:
1;
4,1;
18,8,1;
112,68,12,1;
965,712,150,16,1;
10957,9270,2184,264,20,1; ...
where Q^2 transforms column k of Q^2 into column k+1:
at k=0, [Q^2]*[1,4,18,112,965,...] = [1,8,68,712,9270,...];
at k=1, [Q^2]*[1,8,68,712,9270,...] =
[1,12,150,2184,37523,...].
		

Crossrefs

Cf. A113351 (column 1), A113352 (column 2), A113353 (column 3), A113354 (column 4); A113355 (Q^2), A113365 (Q^3), A113340 (P), A113345 (P^2), A113360 (P^3).

Programs

  • PARI
    Q(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^(2*k+2))[n-k+1,1]

Formula

Let [Q^m]_k denote column k of matrix power Q^m,
so that triangular matrix Q may be defined by
[Q]_k = [P^(2*k+2)]_0, for k>=0, where
the dual triangular matrix P = A113340 is defined by
[P]_k = [P^(2*k+1)]_0, for k>=0.
Then, amazingly, powers of P and Q satisfy:
[P^(2*j+1)]_k = [P^(2*k+1)]_j,
[P^(2*j+2)]_k = [Q^(2*k+1)]_j,
[Q^(2*j+2)]_k = [Q^(2*k+2)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^2 * [P]k = [P]{k+1},
P^2 * [Q]k = [Q]{k+1},
Q^2 * [P^2]k = [P^2]{k+1},
Q^2 * [Q^2]k = [Q^2]{k+1},
for all k>=0.

A113351 Column 1 of triangle A113350, also equals column 0 of A113340^4.

Original entry on oeis.org

1, 4, 22, 166, 1671, 21510, 341463, 6496923, 144856710, 3716746006, 108133664181, 3523951953981, 127331488458476, 5057405619797317, 219179491109978660, 10298771194610350427, 521765883689616772731, 28363341834962918344084
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Crossrefs

Cf. A113340, A113350, A113346 (column 0), A113352 (column 2), A113353 (column 3), A113354 (column 4).

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^4)[n+1,1]

A113352 Column 2 of triangle A113350, also equals column 0 of A113340^6.

Original entry on oeis.org

1, 6, 51, 561, 7726, 129406, 2572892, 59525136, 1576414408, 47144606666, 1574176301192, 58126182666796, 2354183194432226, 103850488571214174, 4959424774062415780, 255032863135423053615, 14056171975717324065788
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Crossrefs

Cf. A113340, A113350, A113346 (column 0), A113351 (column 1), A113353 (column 3), A113354 (column 4).

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^6)[n+1,1]

A113353 Column 3 of triangle A113350, also equals column 0 of A113340^8.

Original entry on oeis.org

1, 8, 92, 1324, 23010, 471724, 11198006, 303137822, 9239501237, 313689623136, 11755195387720, 482435619984340, 21537360479898341, 1039758627381190676, 54002918637393187687, 3003770445258147527669, 178205904321326719715551
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Crossrefs

Cf. A113340, A113350, A113346 (column 0), A113351 (column 1), A113352 (column 2), A113354 (column 4).

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^8)[n+1,1]
Showing 1-4 of 4 results.