cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113365 Matrix cube of triangle A113350.

Original entry on oeis.org

1, 6, 1, 39, 12, 1, 327, 138, 18, 1, 3556, 1830, 297, 24, 1, 48659, 28805, 5349, 516, 30, 1, 812462, 535004, 109095, 11724, 795, 36, 1, 16136404, 11568197, 2529909, 292894, 21795, 1134, 42, 1, 373415239, 287143993, 66345668, 8117624, 643790, 36402, 1533
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2005

Keywords

Examples

			Triangle begins:
1;
6,1;
39,12,1;
327,138,18,1;
3556,1830,297,24,1;
48659,28805,5349,516,30,1;
812462,535004,109095,11724,795,36,1;
16136404,11568197,2529909,292894,21795,1134,42,1;
373415239,287143993,66345668,8117624,643790,36402,1533,48,1; ...
		

Crossrefs

Cf. A113340, A113350, A113346 (column 0), A113366 (column 1), A113367 (column 2); A113355 (=A113350^2), A113360 (=A113340^3).

Programs

  • PARI
    T(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(2*c))[r-c+1,1]))^3)[n+1,k+1]

Formula

Column k of A113350^3 = column 1 of A113340^(2*k+2) for k>=0.

A113366 Column 1 of triangle A113365, also equals column 1 of A113340^4.

Original entry on oeis.org

1, 12, 138, 1830, 28805, 535004, 11568197, 287143993, 8077888153, 254672147047, 8910929460415, 343135184110984, 14435616939387951, 659276261774240232, 32504007393860850275, 1721495715845423489806, 97516667477625085469176
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2005

Keywords

Comments

A113365 equals the matrix cube of A113350, where column 1 of A113350^3 = column 1 of A113340^4.

Crossrefs

Cf. A113340, A113350, A113365 (=A113350^3), A113346 (column 0), A113367 (column 2); A113355 (=A113350^2), A113360 (=A113340^3).

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(2*c))[r-c+1,1]))^3)[n+2,2]
Showing 1-2 of 2 results.