cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A113381 Triangle Q, read by rows, such that Q^3 transforms column k of Q^2 into column k+1 of Q^2, so that column k of Q^2 equals column 0 of Q^(3*k+2), where Q^3 denotes the matrix cube of Q.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 37, 45, 8, 1, 429, 635, 120, 11, 1, 7629, 12815, 2556, 231, 14, 1, 185776, 343815, 71548, 6556, 378, 17, 1, 5817106, 11651427, 2508528, 233706, 13391, 561, 20, 1, 224558216, 480718723, 106427700, 10069521, 579047, 23817, 780, 23, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Comments

Related matrix products are: R^3*Q^-2 (A114154), Q^-2*P^3 (A114155).

Examples

			Triangle Q begins:
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1;
185776,343815,71548,6556,378,17,1;
5817106,11651427,2508528,233706,13391,561,20,1;
224558216,480718723,106427700,10069521,579047,23817,780,23,1;
Matrix square Q^2 (A113384) starts:
1;
4,1;
22,10,1;
212,130,16,1;
3255,2365,328,22,1;
70777,57695,8640,616,28,1; ...
Matrix cube Q^3 (A113387) starts:
1;
6,1;
48,15,1;
605,255,24,1;
11196,5630,624,33,1;
280440,159210,19484,1155,42,1; ...
where Q^3 transforms column k of Q^2 into column k+1:
at k=0, [Q^3]*[1,4,22,212,3255,...] = [1,10,130,2365,...];
at k=1, [Q^3]*[1,10,130,2365,...] = [1,16,328,8640,...].
		

Crossrefs

Cf. A113375 (column 0), A113382 (column 1), A113383 (column 2).
Cf. A113370 (P), A113374 (P^2), A113378 (P^3), A113384 (Q^2), A113387 (Q^3), A113389 (R), A113392 (R^2), A113394 (R^3).
Cf. A114154 (R^3*Q^-2), A114155 (Q^-2*P^3).
Cf. variants: A113340, A113350.

Programs

  • PARI
    Q(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^(3*k+2))[n-k+1,1]

Formula

Let [Q^m]_k denote column k of matrix power Q^m,
so that triangular matrix Q may be defined by
[Q]_k = [P^(3*k+2)]_0, k>=0,
where the triangular matrix P = A113370 satisfies:
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix R = A113389 by
[R]_k = [P^(3*k+3)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]k = [P]{k+1},
P^3 * [Q]k = [Q]{k+1},
P^3 * [R]k = [R]{k+1},
Q^3 * [P^2]k = [P^2]{k+1},
Q^3 * [Q^2]k = [Q^2]{k+1},
Q^3 * [R^2]k = [R^2]{k+1},
R^3 * [P^3]k = [P^3]{k+1},
R^3 * [Q^3]k = [Q^3]{k+1},
R^3 * [R^3]k = [R^3]{k+1},
for all k>=0.

A113374 Triangle, read by rows, equal to the matrix square of A113370. Also given by the product: P^2 = Q*(R^-2)*Q^3, using triangular matrices P=A113370, Q=A113381 and R=A113389.

Original entry on oeis.org

1, 2, 1, 6, 8, 1, 37, 84, 14, 1, 429, 1296, 252, 20, 1, 7629, 27850, 5957, 510, 26, 1, 185776, 784146, 179270, 16180, 858, 32, 1, 5817106, 27630378, 6641502, 623115, 34125, 1296, 38, 1, 224558216, 1177691946, 294524076, 28470525, 1599091, 61952
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Examples

			Triangle A113370^2 begins:
1;
2,1;
6,8,1;
37,84,14,1;
429,1296,252,20,1;
7629,27850,5957,510,26,1;
185776,784146,179270,16180,858,32,1;
5817106,27630378,6641502,623115,34125,1296,38,1;
224558216,1177691946,294524076,28470525,1599091,61952,1824,44,1;
		

Crossrefs

Cf. A113370, A113381, A113389; A113375 (column 0), A113376 (column 1), A113377 (column 2); A113378 (P^3), A113387 (Q^3).

Programs

  • PARI
    T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+1,k+1]

Formula

Column k of A113370^2 = column 0 of A113381^(3*k+1).

A113376 Column 1 of triangle A113374, also equals column 0 of A113381^4.

Original entry on oeis.org

1, 8, 84, 1296, 27850, 784146, 27630378, 1177691946, 59169833470, 3434258845248, 226594550768662, 16775755397765720, 1378646430074005827, 124636321499378130839, 12300850874338422058685
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113375 (column 0), A113377 (column 2).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+2,2]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113377 Column 2 of triangle A113374, also equals column 0 of A113381^7.

Original entry on oeis.org

1, 14, 252, 5957, 179270, 6641502, 294524076, 15285260326, 911664081027, 61573228385424, 4652227417900405, 389256081747220268, 35759870451009454561, 3580704593280285017869, 388344720309998846243731
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113375 (column 0), A113376 (column 1).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+3,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+3,3]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113382 Column 1 of triangle A113381, also equals column 0 of A113370^5.

Original entry on oeis.org

1, 5, 45, 635, 12815, 343815, 11651427, 480718723, 23489845779, 1330745268401, 85944092769721, 6242138253088466, 504185328302302736, 44867722807185829082, 4364538423763543903228, 460969199012824227856506
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113381, A113375 (column 0), A113383 (column 2), A113370.

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^5)[n+1,1]

Formula

Column k of A113381 = column 0 of A113370^(3*k+2) for k>=0.

A113383 Column 2 of triangle A113381, also equals column 0 of A113370^8.

Original entry on oeis.org

1, 8, 120, 2556, 71548, 2508528, 106427700, 5323786728, 307710142888, 20222341451124, 1491479257952300, 122128352186849366, 11002901720698439826, 1082337197005046142588, 115485905212456384697750
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113381, A113375 (column 0), A113382 (column 1), A113370.

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^8)[n+1,1]

Formula

Column k of A113381 = column 0 of A113370^(3*k+2) for k>=0.
Showing 1-6 of 6 results.