cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113378 Triangle, read by rows, equal to the matrix cube of A113370.

Original entry on oeis.org

1, 3, 1, 15, 12, 1, 136, 168, 21, 1, 1998, 3190, 483, 30, 1, 41973, 80136, 13615, 960, 39, 1, 1166263, 2553162, 469476, 35785, 1599, 48, 1, 40747561, 99579994, 19419225, 1562220, 74074, 2400, 57, 1, 1726907675, 4624245724, 944233801, 79072620
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Examples

			Triangle A113370^3 begins:
1;
3,1;
15,12,1;
136,168,21,1;
1998,3190,483,30,1;
41973,80136,13615,960,39,1;
1166263,2553162,469476,35785,1599,48,1;
40747561,99579994,19419225,1562220,74074,2400,57,1;
1726907675,4624245724,944233801,79072620,3908034,132856,3363,66,1;
		

Crossrefs

Cf. A113370, A113389, A113379 (column 0), A113380 (column 1).

Programs

  • PARI
    T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+1,k+1]

Formula

Column k of A113370^3 = column 0 of A113389^(3*k+1) for k>=0.

A113379 Column 0 of triangle A113378, also equals column 0 of A113389.

Original entry on oeis.org

1, 3, 15, 136, 1998, 41973, 1166263, 40747561, 1726907675, 86421647389, 5002021986418, 329382745551946, 24351172588548270, 1999205882982496161, 180613538916429940159, 17817366508243503227269
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113378, A113370, A113389, A113380 (column 1).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+1,1]

Formula

A113378 equals the matrix cube of A113370, which has the property: column k of A113370^3 = column 0 of A113389^(3*k+1) for k>=0.
Showing 1-2 of 2 results.