cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113384 Triangle, read by rows, equal to the matrix square of A113381. Also given by: Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P, using triangular matrices P=A113370, Q=A113381 and R=A113389.

Original entry on oeis.org

1, 4, 1, 22, 10, 1, 212, 130, 16, 1, 3255, 2365, 328, 22, 1, 70777, 57695, 8640, 616, 28, 1, 2022897, 1798275, 284356, 21197, 994, 34, 1, 72375484, 68931064, 11358500, 875424, 42196, 1462, 40, 1, 3130502129, 3155772612, 537277044, 42499204
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Examples

			Triangle A113381^2 begins:
1;
4,1;
22,10,1;
212,130,16,1;
3255,2365,328,22,1;
70777,57695,8640,616,28,1;
2022897,1798275,284356,21197,994,34,1;
72375484,68931064,11358500,875424,42196,1462,40,1;
3130502129,3155772612,537277044,42499204,2094365,73797,2020,46,1;
		

Crossrefs

Cf. A113381, A113385 (column 0), A113386 (column 1); A113370, A113389.

Programs

  • PARI
    T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c-1))[r-c+1,1]))^2)[n+1,k+1]

A113385 Column 0 of triangle A113384.

Original entry on oeis.org

1, 4, 22, 212, 3255, 70777, 2022897, 72375484, 3130502129, 159476810183, 9376968779265, 626244735454991, 46892450411406465, 3894861818247549265, 355651177699555693544, 35432761283736539730108
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113381, A113384, A113386 (column 1).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c-1))[r-c+1,1]))^2)[n+1,1]

Formula

A113384 equals the matrix square of A113381, which has the property: column k of A113381^2 = column 0 of A113381^(3*k+2) for k>=0.
Showing 1-2 of 2 results.