cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113407 Expansion of psi(x) * phi(x^2) in powers of x where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 3, 0, 2, 1, 0, 4, 2, 1, 2, 2, 0, 2, 1, 0, 2, 4, 2, 0, 3, 0, 4, 2, 0, 0, 0, 3, 2, 2, 0, 2, 4, 0, 2, 3, 0, 4, 2, 0, 0, 2, 0, 2, 1, 2, 4, 0, 0, 2, 2, 0, 6, 2, 1, 2, 2, 0, 0, 4, 0, 0, 4, 0, 2, 1, 0, 4, 0, 0, 2, 2, 4, 2, 2, 0, 2, 5, 0, 2, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 1, 0, 4, 0, 2, 2, 0, 4, 4, 2, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Oct 28 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Bisection of A008441. Number of ways to write n as two times a square plus a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 2*x^5 + x^6 + 4*x^8 + 2*x^9 + x^10 + 2*x^11 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 2*q^41 + q^49 + 4*q^65 + 2*q^73 + q^81 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(vi).

Crossrefs

Programs

  • Mathematica
    phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[psi[x]*phi[x^2], {x, 0, 104}]; a[n_] := Coefficient[s, x, n] ; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of chi(x) * f(x)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of q^(-1/8) * eta(q^4)^5 / (eta(q) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 1, 1, -4, 1, 1, 1, -2, ...].
a(n) = b(8*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 +(-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f.: (Sum_{k in Z} x^(2*k^2)) * (Sum_{k>=0} x^((k^2 + k)/2)) = Sum_{k>=0} (-1)^k * (x^(2*k + 1) + 1) / (x^(2*k + 1) - 1) * x^((k^2 + k)/2).
a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = a(n). a(n) = A008441(2*n). - Michael Somos, Jul 24 2012