A113407 Expansion of psi(x) * phi(x^2) in powers of x where psi(), phi() are Ramanujan theta functions.
1, 1, 2, 3, 0, 2, 1, 0, 4, 2, 1, 2, 2, 0, 2, 1, 0, 2, 4, 2, 0, 3, 0, 4, 2, 0, 0, 0, 3, 2, 2, 0, 2, 4, 0, 2, 3, 0, 4, 2, 0, 0, 2, 0, 2, 1, 2, 4, 0, 0, 2, 2, 0, 6, 2, 1, 2, 2, 0, 0, 4, 0, 0, 4, 0, 2, 1, 0, 4, 0, 0, 2, 2, 4, 2, 2, 0, 2, 5, 0, 2, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 1, 0, 4, 0, 2, 2, 0, 4, 4, 2, 2, 0, 0, 2
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 2*x^5 + x^6 + 4*x^8 + 2*x^9 + x^10 + 2*x^11 + ... G.f. = q + q^9 + 2*q^17 + 3*q^25 + 2*q^41 + q^49 + 4*q^65 + 2*q^73 + q^81 + ...
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(vi).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[psi[x]*phi[x^2], {x, 0, 104}]; a[n_] := Coefficient[s, x, n] ; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^8 + A)^2), n))};
Formula
Expansion of chi(x) * f(x)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of q^(-1/8) * eta(q^4)^5 / (eta(q) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 1, 1, -4, 1, 1, 1, -2, ...].
a(n) = b(8*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 +(-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f.: (Sum_{k in Z} x^(2*k^2)) * (Sum_{k>=0} x^((k^2 + k)/2)) = Sum_{k>=0} (-1)^k * (x^(2*k + 1) + 1) / (x^(2*k + 1) - 1) * x^((k^2 + k)/2).
a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = a(n). a(n) = A008441(2*n). - Michael Somos, Jul 24 2012
Comments