A113408 Riordan array (1/(1-x^2-x^4*c(x^4)),x*c(x^2)), c(x) the g.f. of A000108.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 3, 0, 12, 0, 5, 0, 1, 0, 12, 0, 20, 0, 6, 0, 1, 6, 0, 30, 0, 30, 0, 7, 0, 1, 0, 30, 0, 60, 0, 42, 0, 8, 0, 1, 10, 0, 90, 0, 105, 0, 56, 0, 9, 0, 1, 0, 60, 0, 210, 0, 168, 0, 72, 0, 10, 0, 1, 20, 0, 210, 0, 420, 0, 252, 0, 90, 0, 11, 0, 1
Offset: 0
Examples
Triangle begins 1; 0,1; 1,0,1; 0,2,0,1; 2,0,3,0,1; 0,6,0,4,0,1; 3,0,12,0,5,0,1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
Table[Binomial[(n + k)/2, k]*Binomial[Floor[(n - k)/2], Floor[(n - k)/4]]*(1 + (-1)^(n - k))/2, {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 09 2017 *)
-
PARI
for(n=0,25, for(k=0,n, print1( binomial((n+k)/2,k) *binomial(floor((n-k)/2),floor((n-k)/4))*(1+(-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Mar 09 2017
Formula
T(n, k) = C((n+k)/2,k)*C(floor((n-k)/2),floor((n-k)/4))(1+(-1)^(n-k))/2.
Comments