cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113408 Riordan array (1/(1-x^2-x^4*c(x^4)),x*c(x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 3, 0, 12, 0, 5, 0, 1, 0, 12, 0, 20, 0, 6, 0, 1, 6, 0, 30, 0, 30, 0, 7, 0, 1, 0, 30, 0, 60, 0, 42, 0, 8, 0, 1, 10, 0, 90, 0, 105, 0, 56, 0, 9, 0, 1, 0, 60, 0, 210, 0, 168, 0, 72, 0, 10, 0, 1, 20, 0, 210, 0, 420, 0, 252, 0, 90, 0, 11, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

Row sums are A113409. Diagonal sums are A005773(n+1) with interpolated zeros.

Examples

			Triangle begins
1;
0,1;
1,0,1;
0,2,0,1;
2,0,3,0,1;
0,6,0,4,0,1;
3,0,12,0,5,0,1;
		

Programs

  • Mathematica
    Table[Binomial[(n + k)/2, k]*Binomial[Floor[(n - k)/2], Floor[(n - k)/4]]*(1 + (-1)^(n - k))/2, {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 09 2017 *)
  • PARI
    for(n=0,25, for(k=0,n, print1( binomial((n+k)/2,k) *binomial(floor((n-k)/2),floor((n-k)/4))*(1+(-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Mar 09 2017

Formula

T(n, k) = C((n+k)/2,k)*C(floor((n-k)/2),floor((n-k)/4))(1+(-1)^(n-k))/2.