cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113409 A transform of the central binomial coefficients A001405.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 21, 39, 74, 141, 271, 521, 1004, 1939, 3756, 7291, 14176, 27599, 53805, 105031, 205268, 401573, 786328, 1541037, 3022528, 5932657, 11652617, 22901865, 45037432, 88616807, 174454943, 343606183, 677074350, 1334744305
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

Row sums of A113408.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]*Binomial[k, Floor[k/2]], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Mar 09 2017 *)
  • PARI
    for(n=0,25, print1(sum(k=0,floor(n/2), binomial(n-k,k)*binomial(k,floor(k/2))), ", ")) \\ G. C. Greubel, Mar 09 2017

Formula

G.f.: (1-xc(x^2))/(1-x^2-x^4c(x^4)), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(k, floor(k/2)).
a(n) = Sum_{k=0..n} C((n+k)/2, k)*C(floor((n-k)/2), floor((n-k)/4)).
Conjecture: (n+2)*a(n)-2*(n+1)*a(n-1) +(n-4)*a(n-2) +2*a(n-3) +4*(2-n)*a(n-4)=0. - R. J. Mathar, Nov 07 2012
a(n) ~ 2^(n + 3/2) / sqrt(3*Pi*n). - Vaclav Kotesovec, Nov 27 2017