cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A209613 Expansion of q * phi(-q^2)^2 * psi(q^3) * psi(-q^3)^2 / psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, -3, 1, 4, 3, -6, -1, 9, -4, -12, -3, 14, 6, -12, 1, 16, -9, -18, 4, 18, 12, -24, 3, 21, -14, -27, -6, 28, 12, -30, -1, 36, -16, -24, 9, 38, 18, -42, -4, 40, -18, -42, -12, 36, 24, -48, -3, 43, -21, -48, 14, 52, 27, -48, 6, 54, -28, -60, -12, 62, 30
Offset: 1

Views

Author

Michael Somos, Mar 10 2012

Keywords

Comments

Number 27 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - 3*q^3 + q^4 + 4*q^5 + 3*q^6 - 6*q^7 - q^8 + 9*q^9 - 4*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^2]^2 QPochhammer[ q^3] QPochhammer[ q^12]^2 / QPochhammer[ q^4]^2 , {q, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, # KroneckerSymbol[ -4, #] KroneckerSymbol[ -3, n/#] &]]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d * kronecker( -4, d) * kronecker( -3, n/d)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, (-1)^e, p==3, (-3)^e, f = kronecker( 3, p) ; (-1)^(e * (p%12>6)) * (p^(e+1) - f^(e+1)) / (p - f))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * (eta(x^2 + A) * eta(x^12 + A) / eta(x^4 + A))^2, n))};

Formula

Expansion of eta(q) * eta(q^3) * (eta(q^2) * eta(q^12) / eta(q^4))^2 in powers of q.
Euler transform of period 12 sequence [-1, -3, -2, -1, -1, -4, -1, -1, -2, -3, -1, -4, ...].
a(n) is multiplicative with a(2^e) = (-1)^e, a(3^e) = (-3)^e, a(p^e) = (-1)^(e * (p mod 12 > 6)) * (p^(e+1) - f^(e+1)) / (p - f) if p > 3 where f = Kronecker(3, p).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A113421.
G.f.: Sum_{k>0} k * x^k / (1 + x^k + x^(2*k)) * Kronecker(-4, k).
G.f.: Sum_{k>0} k * x^k / (1 - x^k + x^(2*k)) * A209615(k).
a(2*n) = -a(n) unless n=0. a(3*n) = a(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(18*sqrt(3)) = 0.316567... . - Amiram Eldar, Jan 23 2024

A260114 Expansion of f(x)^4 * phi(-x^3) / phi(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 6, 14, 18, 21, 30, 38, 42, 43, 48, 62, 66, 74, 78, 64, 84, 98, 102, 110, 96, 133, 126, 108, 138, 112, 150, 158, 162, 183, 126, 182, 192, 194, 198, 160, 210, 180, 222, 230, 192, 242, 252, 288, 228, 208, 270, 278, 282, 273, 240, 252, 306, 314, 336, 294, 330
Offset: 0

Views

Author

Michael Somos, Jul 16 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*x + 14*x^2 + 18*x^3 + 21*x^4 + 30*x^5 + 38*x^6 + 42*x^7 + ...
G.f. = q + 6*q^7 + 14*q^13 + 18*q^19 + 21*q^25 + 30*q^31 + 38*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 1}, DivisorSum[ m, # KroneckerSymbol[ -3, #] KroneckerSymbol[ -4, m/#] &]]];
    a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 1}, DivisorSum[ m, m/# KroneckerSymbol[ 12, #] &]]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^4 EllipticTheta[ 4, 0, x^3] / EllipticTheta[ 4, 0, x], {x, 0, n}];
  • PARI
    {a(n) = my(m = 6*n + 1); if (n<0, 0, sumdiv( m, d, d * kronecker( -3, d) * kronecker( -4, m/d)))};
    
  • PARI
    {a(n) = my(m = 6*n + 1); if (n<0, 0, sumdiv( m, d, m/d * kronecker( 12, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^13 * eta(x^3 + A)^2 / (eta(x + A)^6 * eta(x^4 + A)^4 * eta(x^6 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q^2)^13 * eta(q^3)^2 / (eta(q)^6 * eta(q^4)^4 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 6, -7, 4, -3, 6, -8, 6, -3, 4, -7, 6, -4, ...].
a(n) = A113421(6*n + 1) = A124815(6*n + 1).
a(2*n + 1) = 6 * A260518(n). - Michael Somos, Oct 07 2015
Showing 1-2 of 2 results.