cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113448 Expansion of (eta(q^2)^2 * eta(q^9) * eta(q^18)) / (eta(q) * eta(q^6)) in powers of q.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 3, 0, 1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Michael Somos, Nov 02 2005

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x + x^2 + x^4 + 2*x^7 + x^8 + 2*x^13 + 2*x^14 + x^16 + 2*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, If[ Mod[n, 3] == 0, 0, DivisorSum[ n, KroneckerSymbol[ -12, #] &]]]; (* Michael Somos, Jul 30 2015 *)
    a[ n_] := SeriesCoefficient[ x QPochhammer[ x^9]^3 / QPochhammer[ x^3] + x^2 QPochhammer[ x^18]^3 / QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jul 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%3, sumdiv(n,d, kronecker(-12, d))))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, if( p==3, 1, 1 / ((1 - X) * (1 - kronecker(-12, p)*X))))[n])}
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 0, p%6==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^9 + A) * eta(x^18 + A) / (eta(x + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^9 + A)^3 / eta(x^3 + A) + x * eta(x^18 + A)^3 / eta(x^6 + A), n))};

Formula

Euler transform of period 18 sequence [ 1, -1, 1, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 1, -1, 1, -2, ...].
Moebius transform is period 18 sequence [ 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
a(3*n) = 0, a(2*n) = a(n).
G.f.: Sum_{k>0} x^(6*k - 5) / (1 - x^(6*k - 5)) - x^(6*k - 1) / (1 - x^(6*k - 1)) - x^(18*k - 15) / (1 - x^(18*k - 15)) + x^(18*k - 6) / (1 - x^(18*k - 6)).
G.f.: Sum_{k>0} x^k * (1 - x^(2*k)) * (1 - x^(4*k)) * (1-x^(10*k)) / (1 - x^(18*k)).
Expansion of (c(q) + c(q^2))/3 in powers of q^(1/3) where c(q) is a cubic AGM theta function.
a(3*n + 1) = A033687(n). a(6*n + 1) = A097195(n). - Michael Somos, Jul 30 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Oct 15 2022