A113453 Triangle giving maximal permanent P(n,k) of an n X n lower Hessenberg (0,1)-matrix with exactly k 1's for 2 <= n <= k <= 2n, read by rows.
1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 2, 2, 4, 4, 1, 1, 2, 2, 4, 4, 8, 1, 1, 2, 2, 4, 4, 8, 8, 1, 1, 2, 2, 4, 4, 8, 8, 16, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for rows 2 to 50, flattened
- D. D. Olesky, B. L. Shader and P. van den Driessche, Permanents of Hessenberg (0,1)-matrices, Electronic Journal of Combinatorics, 12 (2005) #R70.
- B. Shader Table of known values of P(n,k) for n<=12.
Programs
-
Mathematica
Table[2^(Floor[(k - n)/2]), {n, 2, 51}, {k, n, 2*n}] // Flatten (* G. C. Greubel, Mar 11 2017 *)
-
PARI
for(n=2,25, for(k=n,2*n, print1(2^(floor((k-n)/2)), ", "))) \\ G. C. Greubel, Mar 11 2017
Formula
P(n, k) = 2^(floor((k-n)/2)), if n <= k <= 2n.